Skip to main content

Advertisement

Log in

Acute myeloid leukemia with t(7;21)(q11.2;q22) expresses a novel, reversed-sequence RUNX1DTX2 chimera

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The RUNX1 gene is frequently rearranged in acute leukemia. We cloned a novel RUNX1 chimeric gene generated by t(7;21)(q11.2;q22) in a patient with acute myeloid leukemia. 3′-rapid amplification of cDNA ends analysis showed a tail-to-tail fusion between RUNX1 on 21q22 and DTX2 on 7q11.2, with an insertion of short complementary sequence from UPK3B adjacent to DTX2. DTX2 encodes a putative E3-ubiquitin ligase with no known biological function. There are two possible functions of RUNX1-reversed UPK3BDTX2: one from aberrant RUNX1 chimeric protein and the other from the reversed sequence of DTX2. The predicted aberrant protein expressed under the RUNX1 promoter was highly structurally similar to RUNX1a. In a reporter assay, the aberrant protein inhibited the trans-activation function of RUNX1 in a dominant-negative manner, similar to RUNX1a. In contrast, the DTX2 reversed sequence may degrade wild-type DTX2 transcript or suppress its translation. In conclusion, we identified a novel fusion RUNX1 partner, DTX2, which chimerize in a reverse direction. This is the first example of RUNX1 chimera in an opposing direction generated by chromosomal translocation in leukemia. In addition to the aberrantly truncated RUNX1 protein, the DTX2 antisense sequence may play some role in the development of leukemia carrying the t(7;21) translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–30.

    Article  PubMed  CAS  Google Scholar 

  2. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996;93:3444–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10:299–304.

    Article  PubMed  CAS  Google Scholar 

  4. Ichikawa M, Goyama S, Asai T, Kawazu M, Nakagawa M, Takeshita M, et al. AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J Immunol. 2008;180:4402–8.

    PubMed  CAS  Google Scholar 

  5. Link KA, Chou FS, Mulloy JC. Core binding factor at the crossroads: determining the fate of the HSC. J Cell Physiol. 2010;222:50–6.

    Article  PubMed  CAS  Google Scholar 

  6. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 1993;12:2715–21.

    PubMed  CAS  Google Scholar 

  7. De Braekeleer E, Ferec C, De Braekeleer M. RUNX1 translocations in malignant hemopathies. Anticancer Res. 2009;29:1031–7.

    PubMed  Google Scholar 

  8. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA. 1991;88:10431–4.

    Article  PubMed  CAS  Google Scholar 

  9. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Nishida J, et al. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J. 1995;14:341–50.

    PubMed  CAS  Google Scholar 

  10. Liu X, Zhang Q, Zhang DE, Zhou C, Xing H, Tian Z, et al. Overexpression of an isoform of AML1 in acute leukemia and its potential role in leukemogenesis. Leukemia. 2009;23:739–45.

    Article  PubMed  CAS  Google Scholar 

  11. Nucifora G, Begy CR, Erickson P, Drabkin HA, Rowley JD. The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1. Proc Natl Acad Sci USA. 1993;90:7784–8.

    Article  PubMed  CAS  Google Scholar 

  12. Ramsey H, Zhang DE, Richkind K, Burcoglu-O’Ral A, Hromas R. Fusion of AML1/Runx1 to copine VIII, a novel member of the copine family, in an aggressive acute myelogenous leukemia with t(12;21) translocation. Leukemia. 2003;17:1665–6.

    Article  PubMed  CAS  Google Scholar 

  13. Hromas R, Shopnick R, Jumean HG, Bowers C, Varella-Garcia M, Richkind K. A novel syndrome of radiation-associated acute myeloid leukemia involving AML1 gene translocations. Blood. 2000;95:4011–3.

    PubMed  CAS  Google Scholar 

  14. Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P, et al. Human deltex is a conserved regulator of Notch signalling. Nat Genet. 1998;19:74–8.

    Article  PubMed  CAS  Google Scholar 

  15. Kishi N, Tang Z, Maeda Y, Hirai A, Mo R, Ito M, et al. Murine homologs of deltex define a novel gene family involved in vertebrate Notch signaling and neurogenesis. Int J Dev Neurosci. 2001;19:21–35.

    Article  PubMed  CAS  Google Scholar 

  16. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993;261:1041–4.

    Article  PubMed  CAS  Google Scholar 

  17. Paschka P. Core binding factor acute myeloid leukemia. Semin Oncol. 2008;35:410–7.

    Article  PubMed  CAS  Google Scholar 

  18. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, Maki K, et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood. 2000;96:3154–60.

    PubMed  CAS  Google Scholar 

  19. Harada H, Harada Y, Tanaka H, Kimura A, Inaba T. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood. 2003;101:673–80.

    Article  PubMed  CAS  Google Scholar 

  20. Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yuko Sato for generously providing us a genomic probe set for RUNX1 gene (YR9 and Y133). We also thank Drs. M. Ishimae and M. Eguchi for reviewing the metaphase and Ms. A. Okada for her special technical assistance. This work was financially supported by the Grants-in-Aid from the Ministries in Japan of Education, Culture, Sports, Science and Technology (17016068), and Health, Labour and Welfare, Japanese Society for the Promotion of Science (20390275, 18591086, 50337391) and Seki Minato Award from Dokkyo Medical University School of Medicine.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinuko Mitani.

About this article

Cite this article

Maki, K., Sasaki, K., Sugita, F. et al. Acute myeloid leukemia with t(7;21)(q11.2;q22) expresses a novel, reversed-sequence RUNX1DTX2 chimera. Int J Hematol 96, 268–273 (2012). https://doi.org/10.1007/s12185-012-1112-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1112-z

Keywords

Navigation