Skip to main content

Advertisement

Log in

Induced pluripotency as a potential path towards iNKT cell-mediated cancer immunotherapy

  • Progress in Hematology
  • Disease modeling and treatment by iPS cells
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Invariant natural killer T (iNKT) cells are characterized by the expression of an invariant Vα14–Jα18 paired with Vβ8/7/2 in mice, and Vα24–Jα18 with Vβ11 in humans, that recognizes glycolipids, such as α-galactosylceramide (α-GalCer), presented on the MHC class I-like molecule, CD1d. iNKT cells act as innate T lymphocytes and serve as a bridge between the innate and acquired immune systems. iNKT cells augment anti-tumor responses by producing IFN-γ, which acts on NK cells to eliminate MHC-non-restricted (MHC) target tumor cells, and on CD8+ cytotoxic T lymphocytes to directly kill MHC-restricted (MHC+) tumor cells. Thus, when iNKT cells are activated by α-GalCer-pulsed dendritic cells, both MHC and MHC+ tumor cells can be effectively eliminated. Both of these tumor cell types are simultaneously present in cancer patients, and at present iNKT cells are only the cell type capable of eliminating them. Based on these findings, we have developed iNKT cell-targeted adjuvant immunotherapies with strong anti-tumor activity in humans. However, two-thirds of patients were ineligible for this therapy due to the limited numbers of iNKT cells in their bodies. In order to overcome the problem in cancer patients, we successfully established a method to generate iNKT cells with adjuvant activity from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In this review, we would like to outline the clinical potential for iNKT cells derived from ESCs and iPSCs for cancer immunotherapy, and the technical hurdles that must be overcome if we achieve effective ESC/iPSC-mediated cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taniguchi M, Harada M, Kojo S, et al. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu Rev Immunol. 2003;21:483–513.

    Article  PubMed  CAS  Google Scholar 

  2. Lantz O, Bendelac A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J Exp Med. 1994;180:1097–106.

    Article  PubMed  CAS  Google Scholar 

  3. Bendelac A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med. 1995;182:2091–6.

    Article  PubMed  CAS  Google Scholar 

  4. Bendelac A, Lantz O, Quimby ME, et al. CD1 recognition by mouse NK1+ T lymphocytes. Science. 1995;268:863–5.

    Article  PubMed  CAS  Google Scholar 

  5. Exley M, Garcia J, Balk SP, et al. Requirements for CD1d recognition by human invariant Vα24+CD4CD8 T cells. J Exp Med. 1997;186:109–20.

    Article  PubMed  CAS  Google Scholar 

  6. Kawano T, Cui J, Koezuka Y, et al. CD1d-restricted and TCR-mediated activation of Valpha14 NKT cells by glycosylceramides. Science. 1997;278:1626–9.

    Article  PubMed  CAS  Google Scholar 

  7. Cui J, Shin T, Kawano T, et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science. 1997;278:1623–6.

    Article  PubMed  CAS  Google Scholar 

  8. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.

    Article  PubMed  CAS  Google Scholar 

  9. Taniguchi M, Seino K, Nakayama T. The NKT cell system: bridging innate and acquired immunity. Nat Immunol. 2003;4:1164–5.

    Article  PubMed  CAS  Google Scholar 

  10. Michel ML, Keller AC, Paget C, et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J Exp Med. 2007;204:995–1001.

    Article  PubMed  CAS  Google Scholar 

  11. Tomura M, Yu WG, Ahn HJ, et al. A novel function of Vα14+CD4+ NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J Immunol. 1999;163:93–101.

    PubMed  CAS  Google Scholar 

  12. Kitamura H, Iwakabe K, Yahata T, et al. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med. 1999;189:1121–8.

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez-Aseguinolaza G, de Oliveira C, Tomaska M, et al. α-Galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria. Proc Natl Acad Sci USA. 2000;97:8461–6.

    Article  PubMed  CAS  Google Scholar 

  14. Trobonjaca Z, Leithäuser F, Möller P, et al. Activating immunity in the liver. I. Liver dendritic cells (but not hepatocytes) are potent activators of IFN-γ release by liver NKT cells. J Immunol. 2001;167:1413–22.

    PubMed  CAS  Google Scholar 

  15. Stober D, Jomantaite I, Schirmbeck R, et al. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J Immunol. 2003;170:2540–8.

    PubMed  CAS  Google Scholar 

  16. Hermans IF, Silk JD, Gileadi U, et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol. 2003;171:5140–7.

    PubMed  CAS  Google Scholar 

  17. Fujii S, Shimizu K, Smith C, et al. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med. 2003;198:267–79.

    Article  PubMed  CAS  Google Scholar 

  18. Fujii S, Liu K, Smith C, et al. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med. 2004;199:1607–18.

    Article  PubMed  CAS  Google Scholar 

  19. Fujii S, Shimizu K, Hemmi H, et al. Innate Vα14+ natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev. 2007;220:183–98.

    Article  PubMed  CAS  Google Scholar 

  20. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of tumor escape phenotypes. Nat Immunol. 2002;3:999–1005.

    Article  PubMed  CAS  Google Scholar 

  21. Yang L, Carbone DP. Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res. 2004;92:13–27.

    Article  PubMed  CAS  Google Scholar 

  22. Toura I, Kawano T, Akutsu Y, et al. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with a-galactosylceramide. J Immunol. 1999;163:2387–91.

    PubMed  CAS  Google Scholar 

  23. Nieda M, Okai M, Tazbirkova A, et al. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood. 2004;103:383–9.

    Article  PubMed  CAS  Google Scholar 

  24. Chang DH, Osman K, Connolly J, et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med. 2005;201:1503–17.

    Article  PubMed  CAS  Google Scholar 

  25. Ishikawa A, Motohashi S, Ishikawa E, et al. A phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res. 2005;11:1910–7.

    Article  PubMed  CAS  Google Scholar 

  26. Motohashi S, Ishikawa A, Ishikawa E, et al. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res. 2006;12:6079–86.

    Article  PubMed  CAS  Google Scholar 

  27. Motohashi S, Nakayama T. Clinical applications of natural killer T cell-based immunotherapy for cancer. Cancer Sci. 2008;99:638–45.

    Article  PubMed  CAS  Google Scholar 

  28. Motohashi S, Nagato K, Kunii N, et al. A phase I–II study of α-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol. 2009;182:2492–501.

    Article  PubMed  CAS  Google Scholar 

  29. Nakayama N, Fang I, Elliott G. Natural killer and B-lymphoid potential in CD34+ cells derived from embryonic stem cells differentiated in the presence of vascular endothelial growth factor. Blood. 1998;91:2283–95.

    PubMed  CAS  Google Scholar 

  30. Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science. 1994;265:1098–101.

    Article  PubMed  CAS  Google Scholar 

  31. Cho SK, Webber TD, Carlyle JR, et al. Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proc Natl Acad Sci USA. 1999;96:9797–802.

    Article  PubMed  CAS  Google Scholar 

  32. de Pooter RF, Cho SK, Carlyle JR, et al. In vitro generation of T lymphocytes from embryonic stem cell-derived prehematopoietic progenitors. Blood. 2003;102:1649–53.

    Article  PubMed  Google Scholar 

  33. Schmitt TM, de Pooter RF, Gronski MA, et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol. 2004;5:410–7.

    Article  PubMed  CAS  Google Scholar 

  34. Hochedlinger K, Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature. 2002;415:1035–8.

    Article  PubMed  CAS  Google Scholar 

  35. Inoue K, Wakao H, Ogonuki N, et al. Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol. 2005;15:1114–8.

    Article  PubMed  CAS  Google Scholar 

  36. Watarai H, Rybouchkin A, Hongo N, et al. Generation of functional NKT cells in vitro from embryonic stem cells bearing rearranged invariant Vα14–Jα18 TCRα gene. Blood. 2010;115:230–7.

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  38. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–7.

    Article  PubMed  CAS  Google Scholar 

  39. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.

    Article  PubMed  CAS  Google Scholar 

  40. Hong H, Takahashi K, Ichisaka T, et al. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature. 2009;460:1132–5.

    Article  PubMed  CAS  Google Scholar 

  41. Schmitt TM, Zúñiga-Pflücker JC. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity. 2002;17:749–56.

    Article  PubMed  CAS  Google Scholar 

  42. Benlagha K, Kyin T, Beavis A, et al. A thymic precursor to the NK T cell lineage. Science. 2002;296:553–5.

    Article  PubMed  CAS  Google Scholar 

  43. Pellicci DG, Hammond KJ, Uldrich AP, et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(−)CD4(+) CD1d-dependent precursor stage. J. J Exp Med. 2002;195:835–44.

    Article  PubMed  CAS  Google Scholar 

  44. Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133:250–64.

    Article  PubMed  CAS  Google Scholar 

  45. Brown M, Rondon E, Rajesh D, et al. Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One. 2010;5:e11373.

    Google Scholar 

  46. Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 2010;7:11–4.

    Article  PubMed  CAS  Google Scholar 

  47. Loh YH, Hartung O, Li H, et al. Reprogramming of T cells from human peripheral blood. Cell Stem Cell. 2010;7:15–9.

    Article  PubMed  Google Scholar 

  48. Staerk J, Dawlaty MM, Gao Q, et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 2010;7:20–4.

    Article  PubMed  CAS  Google Scholar 

  49. Watarai H, Nakagawa R, Omori-Miyake M, et al. Methods for detection, isolation and culture of mouse and human invariant NKT cells. Nat Protoc. 2008;3:70–8.

    Article  PubMed  CAS  Google Scholar 

  50. Watarai H, Fujii S, Yamada D, et al. Murine induced pluripotent stem cells can be derived from and differentiate into natural killer T cells. J Clin Invest. 2010;120:2610–8.

    Article  PubMed  CAS  Google Scholar 

  51. Seki T, Yuasa S, Oda M, et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 2010;7:11–4.

    Article  PubMed  CAS  Google Scholar 

  52. Soldner F, Laganiere J, Cheng AW, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146:318–31.

    Article  PubMed  CAS  Google Scholar 

  53. Chen F, Pruett-Miller SM, Huang Y, et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods. 2011;8:753–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Watarai or Haruhiko Koseki.

About this article

Cite this article

Watarai, H., Yamada, D., Fujii, Si. et al. Induced pluripotency as a potential path towards iNKT cell-mediated cancer immunotherapy. Int J Hematol 95, 624–631 (2012). https://doi.org/10.1007/s12185-012-1091-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1091-0

Keywords

Navigation