Skip to main content
Log in

Transcriptional regulation by GATA1 and GATA2 during erythropoiesis

  • Progress in Hematology
  • Seven wonders of erythropoiesis
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The transcription factor GATA1 regulates multiple genes in erythroid lineage cells. However, the means by which GATA1 regulates the expression of target genes during erythropoiesis remains to be elucidated. Three mechanisms have been postulated for the regulation of genes by GATA1. First, individual target genes may have multiple discrete thresholds for cellular GATA1. GATA1 has a dynamic expression profile during erythropoiesis, thus the expression of a set of GATA1 target genes may be triggered at a given stage of differentiation by cellular GATA1. Second, the expression of GATA1 target genes may be modified, at least in part, by GATA2 occupying the GATA-binding motifs. GATA2 is expressed earlier in erythropoiesis than GATA1, and prior GATA2 binding may afford GATA1 access to GATA motifs through epigenetic remodeling and thus facilitate target gene expression. Third, other regulatory molecules specific to each target gene may function cooperatively with GATA1. If GATA1 is required for the expression of such cofactors, a regulatory network will be formed and relevant gene expression will be delayed. We propose that the stage-specific regulation of erythroid genes by GATA1 is tightly controlled through a combination of these mechanisms in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leonard M, Brice M, Engel JD, Papayannopoulou T. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood. 1993;82:1071–9.

    CAS  PubMed  Google Scholar 

  2. Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA. 1996;93:12355–8.

    Article  CAS  PubMed  Google Scholar 

  3. Martin DI, Zon LI, Mutter G, Orkin SH. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature. 1990;344:444–7.

    Article  CAS  PubMed  Google Scholar 

  4. Romeo PH, Prandini MH, Joulin V, Mignotte V, Prenant M, Vainchenker W, et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature. 1990;344:447–9.

    Article  CAS  PubMed  Google Scholar 

  5. Zon LI, Yamaguchi Y, Yee K, Albee EA, Kimura A, Bennett JC, et al. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood. 1993;81:3234–41.

    CAS  PubMed  Google Scholar 

  6. Gutierrez L, Nikolic T, van Dijk TB, Hammad H, Vos N, Willart M, et al. Gata1 regulates dendritic-cell development and survival. Blood. 2007;110:1933–41.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi S, Onodera K, Motohashi H, Suwabe N, Hayashi N, Yanai N, et al. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J Biol Chem. 1997;272:12611–5.

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez L, Tsukamoto S, Suzuki M, Yamamoto-Mukai H, Yamamoto M, Philipsen S, et al. Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood. 2008;111:4375–85.

    Article  CAS  PubMed  Google Scholar 

  9. Kuhl C, Atzberger A, Iborra F, Nieswandt B, Porcher C, Vyas P. GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1. Mol Cell Biol. 2005;25:8592–606.

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki N, Suwabe N, Ohneda O, Obara N, Imagawa S, Pan X, et al. Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels. Blood. 2003;102:3575–83.

    Article  CAS  PubMed  Google Scholar 

  11. Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 1994;8:1184–97.

    Article  CAS  PubMed  Google Scholar 

  12. Kitajima K, Zheng J, Yen H, Sugiyama D, Nakano T. Multipotential differentiation ability of GATA-1-null erythroid-committed cells. Genes Dev. 2006;20:654–9.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki M, Moriguchi T, Ohneda K, Yamamoto M. Differential contribution of the Gata1 gene hematopoietic enhancer to erythroid differentiation. Mol Cell Biol. 2009;29:1163–75.

    Article  CAS  PubMed  Google Scholar 

  14. Zon LI, Youssoufian H, Mather C, Lodish HF, Orkin SH. Activation of the erythropoietin receptor promoter by transcription factor GATA-1. Proc Natl Acad Sci USA. 1991;88:10638–41.

    Article  CAS  PubMed  Google Scholar 

  15. Evans T, Reitman M, Felsenfeld G. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci USA. 1988;85:5976–80.

    Article  CAS  PubMed  Google Scholar 

  16. Wall L, de Boer E, Grosveld F. The human beta-globin gene 3′ enhancer contains multiple binding sites for an erythroid-specific protein. Genes Dev. 1988;2:1089–100.

    Article  CAS  PubMed  Google Scholar 

  17. Martin DI, Orkin SH. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev. 1990;4:1886–98.

    Article  CAS  PubMed  Google Scholar 

  18. Onodera K, Takahashi S, Nishimura S, Ohta J, Motohashi H, Yomogida K, et al. GATA-1 transcription is controlled by distinct regulatory mechanisms during primitive and definitive erythropoiesis. Proc Natl Acad Sci USA. 1997;94:4487–92.

    Article  CAS  PubMed  Google Scholar 

  19. Nishimura S, Takahashi S, Kuroha T, Suwabe N, Nagasawa T, Trainor C, et al. A GATA box in the GATA-1 gene hematopoietic enhancer is a critical element in the network of GATA factors and sites that regulate this gene. Mol Cell Biol. 2000;20:713–23.

    Article  CAS  PubMed  Google Scholar 

  20. Tsai SF, Strauss E, Orkin SH. Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev. 1991;5:919–31.

    Article  CAS  PubMed  Google Scholar 

  21. Bose F, Fugazza C, Casalgrandi M, Capelli A, Cunningham JM, Zhao Q, et al. Functional interaction of CP2 with GATA-1 in the regulation of erythroid promoters. Mol Cell Biol. 2006;26:3942–54.

    Article  CAS  PubMed  Google Scholar 

  22. Ohneda K, Shimizu R, Nishimura S, Muraosa Y, Takahashi S, Engel JD, et al. A minigene containing four discrete cis elements recapitulates GATA-1 gene expression in vivo. Genes Cells. 2002;7:1243–54.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi S, Shimizu R, Suwabe N, Kuroha T, Yoh K, Ohta J, et al. GATA factor transgenes under GATA-1 locus control rescue germline GATA-1 mutant deficiencies. Blood. 2000;96:910–6.

    CAS  PubMed  Google Scholar 

  24. Valverde-Garduno V, Guyot B, Anguita E, Hamlett I, Porcher C, Vyas P. Differences in the chromatin structure and cis-element organization of the human and mouse GATA1 loci: implications for cis-element identification. Blood. 2004;104:3106–16.

    Article  CAS  PubMed  Google Scholar 

  25. Drissen R, Guyot B, Zhang L, Atzberger A, Sloane-Stanley J, Wood B, et al. Lineage-specific combinatorial action of enhancers regulates mouse erythroid Gata1 expression. Blood. 2010;115:3463–71.

    Article  CAS  PubMed  Google Scholar 

  26. Johnson KD, Kim SI, Bresnick EH. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles. Proc Natl Acad Sci USA. 2006;103:15939–44.

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu R, Kuroha T, Ohneda O, Pan X, Ohneda K, Takahashi S, et al. Leukemogenesis caused by incapacitated GATA-1 function. Mol Cell Biol. 2004;24:10814–25.

    Article  CAS  PubMed  Google Scholar 

  28. Pan X, Ohneda O, Ohneda K, Lindeboom F, Iwata F, Shimizu R, et al. Graded levels of GATA-1 expression modulate survival, proliferation, and differentiation of erythroid progenitors. J Biol Chem. 2005;280:22385–94.

    Article  CAS  PubMed  Google Scholar 

  29. Tsai FY, Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood. 1997;89:3636–43.

    CAS  PubMed  Google Scholar 

  30. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404:193–7.

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki N, Ohneda O, Minegishi N, Nishikawa M, Ohta T, Takahashi S, et al. Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc Natl Acad Sci USA. 2006;103:2202–7.

    Article  CAS  PubMed  Google Scholar 

  32. Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci USA. 2003;100:8811–6.

    Article  CAS  PubMed  Google Scholar 

  33. Pal S, Cantor AB, Johnson KD, Moran TB, Boyer ME, Orkin SH, et al. Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc Natl Acad Sci USA. 2004;101:980–5.

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi-Osaki M, Ohneda O, Suzuki N, Minegishi N, Yokomizo T, Takahashi S, et al. GATA motifs regulate early hematopoietic lineage-specific expression of the Gata2 gene. Mol Cell Biol. 2005;25:7005–20.

    Article  CAS  PubMed  Google Scholar 

  35. Fujiwara T, O’Geen H, Keles S, Blahnik K, Linnemann AK, Kang YA, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell. 2009;36:667–81.

    Article  CAS  PubMed  Google Scholar 

  36. Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC, et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood. 2004;104:3136–47.

    Article  CAS  PubMed  Google Scholar 

  37. Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell. 1997;90:109–19.

    Article  CAS  PubMed  Google Scholar 

  38. Nichols KE, Crispino JD, Poncz M, White JG, Orkin SH, Maris JM, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet. 2000;24:266–70.

    Article  CAS  PubMed  Google Scholar 

  39. Mehaffey MG, Newton AL, Gandhi MJ, Crossley M, Drachman JG. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood. 2001;98:2681–8.

    Article  CAS  PubMed  Google Scholar 

  40. Freson K, Devriendt K, Matthijs G, Van Hoof A, De Vos R, Thys C, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood. 2001;98:85–92.

    Article  CAS  PubMed  Google Scholar 

  41. Freson K, Matthijs G, Thys C, Marien P, Hoylaerts MF, Vermylen J, et al. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet. 2002;11:147–52.

    Article  CAS  PubMed  Google Scholar 

  42. Johnson KD, Boyer ME, Kang JA, Wickrema A, Cantor AB, Bresnick EH. Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function. Blood. 2007;109:5230–3.

    Article  CAS  PubMed  Google Scholar 

  43. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A, et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 1997;16:3145–57.

    Article  CAS  PubMed  Google Scholar 

  44. Lugus JJ, Chung YS, Mills JC, Kim SI, Grass J, Kyba M, et al. GATA2 functions at multiple steps in hemangioblast development and differentiation. Development. 2007;134:393–405.

    Article  CAS  PubMed  Google Scholar 

  45. Landry JR, Bonadies N, Kinston S, Knezevic K, Wilson NK, Oram SH, et al. Expression of the leukemia oncogene Lmo2 is controlled by an array of tissue-specific elements dispersed over 100 kb and bound by Tal1/Lmo2, Ets, and Gata factors. Blood. 2009;113:5783–92.

    Article  CAS  PubMed  Google Scholar 

  46. Crossley M, Tsang AP, Bieker JJ, Orkin SH. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. J Biol Chem. 1994;269:15440–4.

    CAS  PubMed  Google Scholar 

  47. Tallack MR, Whitington T, Yuen WS, Wainwright EN, Keys JR, Gardiner BB, et al. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res. 2010;20:1052–63.

    Article  CAS  PubMed  Google Scholar 

  48. Cheng Y, Wu W, Kumar SA, Yu D, Deng W, Tripic T, et al. Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res. 2009;19:2172–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI 19GS0312 (to M.Y.), 21390288 (to R.S.) and 22790269 (to M.S.), and the Tohoku University Global COE for the Conquest of Signal Transduction Diseases with Network Medicine (to M.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yamamoto.

About this article

Cite this article

Suzuki, M., Shimizu, R. & Yamamoto, M. Transcriptional regulation by GATA1 and GATA2 during erythropoiesis. Int J Hematol 93, 150–155 (2011). https://doi.org/10.1007/s12185-011-0770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-011-0770-6

Keywords

Navigation