Skip to main content

Advertisement

Log in

Treatment of central nervous system lymphoma in rats with intraventricular rituximab and serum

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

B cell lymphomas often develop in the central nervous system (CNS). Although rituximab (RTX) has been widely used for most B cell lymphomas, the efficacy for CNS lymphomas has yet to be elucidated. A major concern is that RTX might not reach lymphoma lesions, and either the antibody-dependent cellular cytotoxicity or complement-dependent cytotoxicity might not substantially operate in the CNS environment. Here we investigated the potential usefulness of co-administering RTX and human serum intraventricularly in nude rats carrying human B cell lymphomas in the CNS. Raji, a CD20-positive lymphoma cell line, was inoculated into the cerebrum of F344 (rnu/rnu) nude rats. After several days, RTX and human serum were delivered into the ipsilateral lateral ventricle via a cannula. Intraventricularly administered RTX was localized specifically at the lymphoma lesions, indicating that RTX penetrated the ependymal layer of the lateral ventricle to reach the tumor lesion, where it specifically bound to the lymphoma cells. The combination of RTX and serum (n = 12), but not RTX alone (n = 13), significantly extended the survival of the rats (P = 0.049). Intraventricular administration of RTX and serum in a rat/human CNS lymphoma model might be a potential novel treatment for CNS lymphomas of B cell origin. Clinical trials are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2008.

  2. Yamanaka R, Morii K, Shinbo Y, Homma J, Sano M, Tsuchiya N, et al. Results of treatment of 112 cases of primary CNS lymphoma. Jpn J Clin Oncol. 2008;38(5):373–80.

    Article  PubMed  Google Scholar 

  3. Jahnke K, Thiel E. Treatment options for central nervous system lymphomas in immunocompetent patients. Expert Rev Neurother. 2009;9(10):1497–509.

    Article  PubMed  Google Scholar 

  4. Shimazu Y, Notohara K, Ueda Y. Diffuse large B-cell lymphoma with central nervous system relapse: prognosis and risk factors according to retrospective analysis from a single-center experience. Int J Hematol. 2009;89(5):577–83.

    Article  CAS  PubMed  Google Scholar 

  5. Stamenkovic I, Seed B. Analysis of two cDNA clones encoding the B lymphocyte antigen CD20 (B1, Bp35), a type III integral membrane protein. J Exp Med. 1988;167(6):1975–80.

    Article  CAS  PubMed  Google Scholar 

  6. Einfeld DA, Brown JP, Valentine MA, Clark EA, Ledbetter JA. Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. EMBO J. 1988;7(3):711–7.

    CAS  PubMed  Google Scholar 

  7. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.

    CAS  PubMed  Google Scholar 

  8. Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I. Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol. 2000;204(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  9. Shimadoi S, Takami A, Kondo Y, Okumura H, Nakao S. Macrophage colony-stimulating factor enhances rituximab-dependent cellular cytotoxicity by monocytes. Cancer Sci. 2007;98(9):1368–72.

    Article  CAS  PubMed  Google Scholar 

  10. van Meerten T, van Rijn RS, Hol S, Hagenbeek A, Ebeling SB. Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res. 2006;12(13):4027–35.

    Article  PubMed  Google Scholar 

  11. Manches O, Lui G, Chaperot L, Gressin R, Molens JP, Jacob MC, et al. In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood. 2003;101(3):949–54.

    Article  CAS  PubMed  Google Scholar 

  12. Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104(6):1793–800.

    Article  CAS  PubMed  Google Scholar 

  13. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171(3):1581–7.

    CAS  PubMed  Google Scholar 

  14. Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood. 2000;95(12):3900–8.

    CAS  PubMed  Google Scholar 

  15. Cardarelli PM, Quinn M, Buckman D, Fang Y, Colcher D, King DJ, et al. Binding to CD20 by anti-B1 antibody or F(ab’)(2) is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol Immunother. 2002;51(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  16. Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood. 2002;99(3):1038–43.

    Article  CAS  PubMed  Google Scholar 

  17. Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood. 2002;99(4):1314–9.

    Article  CAS  PubMed  Google Scholar 

  18. Harjunpaa A, Wiklund T, Collan J, Janes R, Rosenberg J, Lee D, et al. Complement activation in circulation and central nervous system after rituximab (anti-CD20) treatment of B-cell lymphoma. Leuk Lymphoma. 2001;42(4):731–8.

    Article  CAS  PubMed  Google Scholar 

  19. Rubenstein JL, Combs D, Rosenberg J, Levy A, McDermott M, Damon L, et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood. 2003;101(2):466–8.

    Article  CAS  PubMed  Google Scholar 

  20. Schulz H, Pels H, Schmidt-Wolf I, Zeelen U, Germing U, Engert A. Intraventricular treatment of relapsed central nervous system lymphoma with the anti-CD20 antibody rituximab. Haematologica. 2004;89(6):753–4.

    CAS  PubMed  Google Scholar 

  21. Johanson CE, Duncan JA, Stopa EG, Baird A. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res. 2005;22(7):1011–37.

    Article  CAS  PubMed  Google Scholar 

  22. Belichenko PV, Dickson PI, Passage M, Jungles S, Mobley WC, Kakkis ED. Penetration, diffusion, and uptake of recombinant human alpha-l-iduronidase after intraventricular injection into the rat brain. Mol Genet Metab. 2005;86(1–2):141–9.

    Article  CAS  PubMed  Google Scholar 

  23. Pardridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab. 1997;17(7):713–31.

    Article  CAS  PubMed  Google Scholar 

  24. de Lange EC, de Boer BA, Breimer DD. Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv Drug Deliv Rev. 1999;36(2–3):211–27.

    PubMed  Google Scholar 

  25. Saini M, Bellinzona M, Weichhold W, Samii M. A new xenograft model of primary central nervous system lymphoma. J Neurooncol. 1999;43(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  26. Mineo JF, Scheffer A, Karkoutly C, Nouvel L, Kerdraon O, Trauet J, et al. Using human CD20-transfected murine lymphomatous B cells to evaluate the efficacy of intravitreal and intracerebral rituximab injections in mice. Invest Ophthalmol Vis Sci. 2008;49(11):4738–45.

    Article  PubMed  Google Scholar 

  27. Hudson WA, Li Q, Le C, Kersey JH. Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia. 1998;12(12):2029–33.

    Article  CAS  PubMed  Google Scholar 

  28. Griffiths GL, Mattes MJ, Stein R, Govindan SV, Horak ID, Hansen HJ, et al. Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin Cancer Res. 2003;9(17):6567–71.

    CAS  PubMed  Google Scholar 

  29. Kadoch C, Dinca EB, Voicu R, Chen L, Nguyen D, Parikh S, et al. Pathologic correlates of primary central nervous system lymphoma defined in an orthotopic xenograft model. Clin Cancer Res. 2009;15(6):1989–97.

    Article  CAS  PubMed  Google Scholar 

  30. Carson MJ, Reilly CR, Sutcliffe JG, Lo D. Mature microglia resemble immature antigen-presenting cells. Glia. 1998;22(1):72–85.

    Article  CAS  PubMed  Google Scholar 

  31. Havenith CE, Askew D, Walker WS. Mouse resident microglia: isolation and characterization of immunoregulatory properties with naive CD4+ and CD8+ T-cells. Glia. 1998;22(4):348–59.

    Article  CAS  PubMed  Google Scholar 

  32. Rubenstein JL, Fridlyand J, Abrey L, Shen A, Karch J, Wang E, et al. Phase I study of intraventricular administration of rituximab in patients with recurrent CNS and intraocular lymphoma. J Clin Oncol. 2007;25(11):1350–6.

    Article  CAS  PubMed  Google Scholar 

  33. Pradilla G, Wang PP, Gabikian P, Li K, Magee CA, Walter KA, et al. Local intracerebral administration of Paclitaxel with the paclimer delivery system: toxicity study in a canine model. J Neurooncol. 2006;76(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  34. Takami A, Hayashi T, Kita D, Nishimura R, Asakura H, Nakao S. Treatment of primary central nervous system lymphoma with induction of complement-dependent cytotoxicity by intraventricular administration of autologous-serum-supplemented rituximab. Cancer Sci. 2006;97(1):80–3.

    Article  CAS  PubMed  Google Scholar 

  35. Fischer HG, Reichmann G. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol. 2001;166(4):2717–26.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. Usui and Ms. K. Noguchi (University of Tsukuba) for technical assistance with immunohistochemistry; Drs. T. Yamamoto, W. Tsuruta, and T. Tsurubuchi (University of Tsukuba) for technical advice with the rat surgical experiments and brain stereotaxic apparatus; and Drs. T. Sakurai (current affiliation, Kanazawa University) and T. Matsuki (current affiliation, University of Texas Southwestern Medical Center at Dallas) for technical assistance with the rat cannulation. This work was supported by the Aichi Cancer Research Foundation (Y. O.) and Research Grant of the Princess Takamatsu Cancer Research Fund (S. C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasushi Okoshi or Shigeru Chiba.

Additional information

Y. Miyake and Y. Okoshi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

About this article

Cite this article

Miyake, Y., Okoshi, Y., Machino, T. et al. Treatment of central nervous system lymphoma in rats with intraventricular rituximab and serum. Int J Hematol 92, 474–480 (2010). https://doi.org/10.1007/s12185-010-0669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0669-7

Keywords

Navigation