Skip to main content

Advertisement

Log in

Separation of antileukemic effects from graft-versus-host disease in MHC-haploidentical murine bone marrow transplantation: participation of host immune cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Allogeneic hematopoietic stem cell transplantation (HSCT) is associated with both graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects. In clinical studies of HLA-mismatched HSCT, strong GVL effects have been reported. In the present study, we addressed the mechanism of the GVL and GVH response using MHC-haploidentical murine bone marrow transplantation (BMT) models. Recipient BDF1 (H-2b/d) mice received T cell-depleted bone marrow and spleen cells from B6C3F1 (H-2b/k) or C57BL/6 (H-2b) mice with or without P815 mastocytoma cells (H-2d) after receiving lethal total body irradiation. B6C3F1 → BDF1 (hetero-to-hetero type) recipients showed more powerful antileukemic effects with less severe GVHD than C57BL/6 → BDF1 (parent-to-F1 type) recipients. Compared with C57BL/6 → BDF1 recipients, significantly higher in vitro cytotoxic activity against P815 cells was observed in B6C3F1 → BDF1 recipients. Significantly lower CXCR3 expression on donor T cells and higher interferon (IFN)-γ expression were considered to be associated with strong antileukemic effects with less severe GVHD in B6C3F1 → BDF1 recipients. Furthermore, host immune cells, especially natural killer cells and CD8+ T cells, were found to contribute remarkably to high IFN-γ production in B6C3F1 → BDF1 recipients. Thus, in MHC-haploidentical HSCT, host immune cells may change the balance between GVH and GVL response through IFN-γ production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomas ED. Karnofsky memorial lecture. Marrow transplantation for malignant diseases. J Clin Oncol. 1983;1:517–31.

    CAS  PubMed  Google Scholar 

  2. Bortin MM, Rimm AA. Increasing utilization of bone marrow transplantation. Transplantation. 1986;42:229–34.

    Article  CAS  PubMed  Google Scholar 

  3. Gale RP. Graft-versus-host disease. Immunol Rev. 1985;88:193–214.

    Article  CAS  PubMed  Google Scholar 

  4. Ringden O, Nilsson B. Death by graft-versus-host disease associated with HLA mismatch, high recipient age, low marrow cell dose, and splenectomy. Transplantation. 1985;40:39–44.

    Article  CAS  PubMed  Google Scholar 

  5. Ikegame K, Tanji Y, Kitai N, Tamaki H, Kawakami M, Fujioka T, et al. Successful treatment of refractory T-cell acute lymphoblastic leukemia by unmanipulated stem cell transplantation from an HLA 3-loci mismatched (haploidentical) sibling. Bone Marrow Transplant. 2003;31:507–10.

    Article  CAS  PubMed  Google Scholar 

  6. Ogawa H, Ikegame K, Kawakami M, Tsuboi A, Kim EH, Hosen N, et al. Powerful graft-versus-leukemia effects exerted by HLA-haploidentical grafts engrafted with a reduced-intensity regimen for relapse following myeloablative HLA-matched transplantation. Transplantation. 2004;78:488–9.

    Article  PubMed  Google Scholar 

  7. Ogawa H, Ikegame K, Yoshihara S, Kawakami M, Fujioka T, Masuda T, et al. Unmanipulated HLA 2–3 antigen-mismatched (haploidentical) stem cell transplantation using nonmyeloablative conditioning. Biol Blood Marrow Transplant. 2006;12:1073–84.

    Article  PubMed  Google Scholar 

  8. Ogawa H, Ikegame K, Kaida K, Yoshihara S, Fujioka T, Taniguchi Y, et al. Unmanipulated HLA 2–3 antigen-mismatched (haploidentical) bone marrow transplantation using only pharmacological GVHD prophylaxis. Exp Hematol. 2008;36:1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Murai M, Yoneyama H, Ezaki T, Suematsu M, Terashima Y, Harada A, et al. Peyer’s patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nat Immunol. 2003;4:154–60.

    Article  CAS  PubMed  Google Scholar 

  10. Welniak LA, Blazar BR, Anver MR, Wiltrout RH, Murphy WJ. Opposing roles of interferon-gamma on CD4+ T cell-mediated graft-versus-host disease: effects of conditioning. Biol Blood Marrow Transplant. 2000;6:604–12.

    Article  CAS  PubMed  Google Scholar 

  11. Yang YG, Qi J, Wang MG, Sykes M. Donor-derived interferon gamma separates graft-versus-leukemia effects and graft-versus-host disease induced by donor CD8 T cells. Blood. 2002;99:4207–15.

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Asavaroengchai W, Yeap BY, Wang MG, Wang S, Sykes M, et al. Paradoxical effects of IFN-gamma in graft-versus-host disease reflect promotion of lymphohematopoietic graft-versus-host reactions and inhibition of epithelial tissue injury. Blood. 2009;113:3612–9.

    Article  CAS  PubMed  Google Scholar 

  13. Brok HP, Heidt PJ, van der Meide PH, Zurcher C, Vossen JM. Interferon-gamma prevents graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Immunol. 1993;151:6451–9.

    CAS  PubMed  Google Scholar 

  14. Burman AC, Banovic T, Kuns RD, Clouston AD, Stanley AC, Morris ES, et al. IFNγ differentially controls the development of idiopathic pneumonia syndrome and GVHD of the gastrointestinal tract. Blood. 2007;110:1064–72.

    Article  CAS  PubMed  Google Scholar 

  15. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr, Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation. I. The roles of minor H antigens and endotoxin. Blood. 1996;88:3230–9.

    CAS  PubMed  Google Scholar 

  16. Yoshida Y, Hirano T, Son G, Iimuro Y, Imado T, Iwasaki T, et al. Allogeneic bone marrow transplantation for hepatocellular carcinoma: hepatocyte growth factor suppresses graft-vs.-host disease. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1114–23.

    Article  CAS  PubMed  Google Scholar 

  17. Kubo S, Seleme MC, Soifer HS, Perez JL, Moran JV, Kazazian HH Jr, et al. L1 retrotransposition in nondividing and primary human somatic cells. Proc Natl Acad Sci USA. 2006;103:8036–41.

    Article  CAS  PubMed  Google Scholar 

  18. Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27:2185–95.

    Article  PubMed  Google Scholar 

  19. Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, Jang BS, et al. In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res. 2007;13:6639–48.

    Article  CAS  PubMed  Google Scholar 

  20. Iwasaki T, Fujiwara H, Shearer GM. Loss of proliferative capacity and T cell immune development potential by bone marrow from mice undergoing a graft-vs-host reaction. J Immunol. 1986;137:3100–8.

    CAS  PubMed  Google Scholar 

  21. Jaksch M, Remberger M, Mattsson J. Increased gene expression of chemokine receptors is correlated with acute graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11:280–7.

    Article  CAS  PubMed  Google Scholar 

  22. Sackstein R. A revision of Billingham’s tenets: the central role of lymphocyte migration in acute graft-versus-host disease. Biol Blood Marrow Transplant. 2006;12:2–8.

    Article  PubMed  Google Scholar 

  23. Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood. 2000;95:2754–9.

    CAS  PubMed  Google Scholar 

  24. Snijders A, Kalinski P, Hilkens CM, Kapsenberg ML. High-level IL-12 production by human dendritic cells requires two signals. Int Immunol. 1998;10:1593–8.

    Article  CAS  PubMed  Google Scholar 

  25. Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N, Yang SY, et al. T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol. 2002;3:549–57.

    Article  CAS  PubMed  Google Scholar 

  26. Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat Immunol. 2004;5:1260–5.

    Article  PubMed  CAS  Google Scholar 

  27. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol. 2002;2:957–64.

    Article  CAS  PubMed  Google Scholar 

  28. Pelot MR, Pearson DA, Swenson K, Zhao G, Sachs J, Yang YG, et al. Lymphohematopoietic graft-vs.-host reactions can be induced without graft-vs.-host disease in murine mixed chimeras established with a cyclophosphamide-based nonmyeloablative conditioning regimen. Biol Blood Marrow Transplant. 1999;5:133–43.

    Article  CAS  PubMed  Google Scholar 

  29. Rottman M, Soudais C, Vogt G, Renia L, Emile JF, Decaluwe H, et al. IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts. PLoS Med. 2008;5:e26.

    Article  PubMed  CAS  Google Scholar 

  30. Böhm W, Thoma S, Leithäuser F, Möller P, Schirmbeck R, Reimann J. T cell-mediated, IFN-gamma-facilitated rejection of murine B16 melanomas. J Immunol. 1998;161:897–908.

    PubMed  Google Scholar 

  31. Sayers TJ, Brooks AD, Lee JK, Fenton RG, Komschlies KL, Wigginton JM, et al. Molecular mechanisms of immune-mediated lysis of murine renal cancer: differential contributions of perforin-dependent versus Fas-mediated pathways in lysis by NK and T cells. J Immunol. 1998;161:3957–65.

    CAS  PubMed  Google Scholar 

  32. Puliaev R, Nguyen P, Finkelman FD, Via CS. Differential requirement for IFN-gamma in CTL maturation in acute murine graft-versus-host disease. J Immunol. 2004;173:910–9.

    CAS  PubMed  Google Scholar 

  33. Sayers TJ, Wiltrout TA, McCormick K, Husted C, Wiltrout RH. Antitumor effects of alpha-interferon and gamma-interferon on a murine renal cancer (Renca) in vitro and in vivo. Cancer Res. 1990;50:5414–20.

    CAS  PubMed  Google Scholar 

  34. Badovinac VP, Tvinnereim AR, Harty JT. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science. 2000;17:1354–8.

    Article  Google Scholar 

  35. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  CAS  PubMed  Google Scholar 

  36. Sawitzki B, Kingsley CI, Oliveira V, Karim M, Herber M, Wood KJ. IFN-gamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J Exp Med. 2005;201:1925–35.

    Article  CAS  PubMed  Google Scholar 

  37. Polchert D, Sobinsky J, Douglas GW, Kidd M, Moadsiri A, Reina E, et al. IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 2008;38:1745–55.

    Article  CAS  PubMed  Google Scholar 

  38. English K, Barry FP, Field-Corbett CP, Mahon BP. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett. 2007;110:91–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kimiko Yamamoto, Hirotsugu Kubo and Hatsuka Seki for technical assistance and also Dr. Tsuyoshi Iwasaki for helpful comments.

Conflict of interest statement

The authors have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Ogawa.

About this article

Cite this article

Satake, A., Inoue, T., Kubo, S. et al. Separation of antileukemic effects from graft-versus-host disease in MHC-haploidentical murine bone marrow transplantation: participation of host immune cells. Int J Hematol 91, 485–497 (2010). https://doi.org/10.1007/s12185-010-0545-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0545-5

Keywords

Navigation