Skip to main content

Advertisement

Log in

Marginal expression of CXCR4 on c-kit+Sca-1+Lineage hematopoietic stem/progenitor cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 are the key regulatory molecules of hematopoietic stem cell (HSC) migration and engraftment to the bone marrow (BM) microenvironment. However, the significance of the ligand–receptor complex on HSC in steady-state BM is not clear. There is currently a lack of information as to how CXCR4 is expressed on HSCs. We herein demonstrate that c-kit+Sca-1+Lineage (KSL) cells freshly isolated from BM expressed very low to undetectable levels of CXCR4. Two hours of incubation at 37°C quickly up-modulated the receptor expression on KSL cells. Protein synthesis was not required for this early stage up-regulation, thus suggesting the emergence of intracellularly pooled receptors to the cell surface. However, protein synthesis was involved at the later stage of up-regulation. The up-regulated CXCR4 was functional, as evidenced by the fact that the incubated KSL cells more efficiently migrated to the SDF-1 gradient in vitro. Therefore, although KSL cells are able to express functional CXCR4, the receptors are only marginally expressed in the steady-state BM microenvironment. These observations therefore indicate the limited role of the SDF-1-CXCR4 axis on HSC functionality in a static BM environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kahn J, Byk T, Jansson-Sjostrand L, Petit I, Shivtiel S, Nagler A, et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood. 2004;103:2942–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kawabata K, Ujikawa M, Egawa T, Kawamoto H, Tachibana K, Iizasa H, et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci USA. 1999;96:5663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity. 1999;10:463–71.

    Article  CAS  PubMed  Google Scholar 

  5. Foudi A, Jarrier P, Zhang Y, Wittner M, Geay J, Lecluse Y, et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood. 2006;107:2243–51.

    Article  CAS  PubMed  Google Scholar 

  6. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002;195:1145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201:1307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–94.

    Article  CAS  PubMed  Google Scholar 

  9. Lévesque J, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest. 2003;111:187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.

    Article  CAS  PubMed  Google Scholar 

  11. Nie Y, Han Y, Zou Y. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med. 2008;205:777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balabanian K, Lagane B, Infantino S, Chow KYC, Harriague J, Moepps B, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280:35760–6.

    Article  CAS  PubMed  Google Scholar 

  13. Cashman J, Clark-Lewis I, Eaves A, Eaves C. Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood. 2002;99:792–9.

    Article  CAS  PubMed  Google Scholar 

  14. Cashman J, Dykstra B, Clark-Lewis I, Eaves A, Eaves C. Changes in the proliferative activity of human hematopoietic stem cells in NOD/SCID mice and enhancement of their transplantability after in vivo treatment with cell cycle inhibitors. J Exp Med. 2002;196:1141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lataillade J, Clay D, Bourin P, Hérodin F, Dupuy C, Jasmin C, et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G0/G1 transition in CD34+ cells: evidence for an autocrine/paracrine mechanism. Blood. 2002;99:1117–29.

    Article  CAS  PubMed  Google Scholar 

  16. Broxmeyer HE. Chemokines in hematopoiesis. Curr Opin Hematol. 2008;15:49–58.

    Article  CAS  PubMed  Google Scholar 

  17. Bermejo M, Martín-Serrano J, Oberlin E, Pedraza MA, Serrano A, Santiago B, et al. Activation of blood T lymphocytes down-regulates CXCR4 expression and interferes with propagation of X4 HIV strains. Eur J Immunol. 1998;28:3192–204.

    Article  CAS  PubMed  Google Scholar 

  18. Förster R, Kremmer E, Schubel A, Breitfeld D, Kleinschmidt A, Nerl C, et al. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J Immunol. 1998;160:1522–31.

    PubMed  Google Scholar 

  19. Kollet O, Petit I, Kahn J, Samira S, Dar A, Peled A, et al. Human CD34+CXCR4 sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood. 2002;100:2778–86.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Foudi A, Geay J, Berthebaud M, Buet D, Jarrier P, et al. Intracellular localization and constitutive endocytosis of CXCR4 in human CD34+ hematopoietic progenitor cells. Stem Cells. 2004;22:1015–29.

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Bryder D, Adolfsson J, Nygren J, Månsson R, Sigvardsson M, et al. Identification of LinSca1+kit+CD34+Flt3 short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood. 2005;105:2717–23.

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki Y, Jensen CT, Karlsson S, Jacobsen SEW. Enforced expression of cyclin D2 enhances the proliferative potential of myeloid progenitors, accelerates in vivo myeloid reconstitution, and promotes rescue of mice from lethal myeloablation. Blood. 2004;104:986–92.

    Article  CAS  PubMed  Google Scholar 

  23. Basu S, Broxmeyer HE. Transforming growth factor-β1 modulates responses of CD34+ cord blood cells to stromal cell-derived factor-1/CXCL12. Blood. 2005;106:485–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P, et al. Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood. 2000;95:756–68.

    CAS  PubMed  Google Scholar 

  25. Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, Kelvin D, et al. The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression. Proc Natl Acad Sci USA. 2000;97:14626–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen H, Cheng T, Olszak I, Garcia-Zepeda E, Lu Z, Herrmann S, et al. CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J Immunol. 2001;166:5027–33.

    Article  CAS  PubMed  Google Scholar 

  27. Aiuti A, Turchetto L, Cota M, Cipponi A, Brambilla A, Arcelloni C, et al. Human CD34+ cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus. Blood. 1999;94:62–73.

    CAS  PubMed  Google Scholar 

  28. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635–8.

    Article  CAS  PubMed  Google Scholar 

  29. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998;393:591–4.

    Article  CAS  PubMed  Google Scholar 

  30. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595–9.

    Article  CAS  PubMed  Google Scholar 

  31. Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol. 2006;34:967–75.

    Article  CAS  PubMed  Google Scholar 

  32. Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest. 2006;116:2808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell. 2009;4:62–72.

    Article  CAS  PubMed  Google Scholar 

  34. Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6:1038–46.

    Article  CAS  PubMed  Google Scholar 

  35. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest. 2000;106:1331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Szilvassy SJ, Bass MJ, Van Zant G, Grimes B. Organ-selective homing defines engraftment kinetics of murine hematopoietic stem cells and is compromised by ex vivo expansion. Blood. 1999;93:1557–66.

    CAS  PubMed  Google Scholar 

  37. Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM. Molecular pathways in bone marrow homing: dominant role of α4β1 over β2-integrins and selectins. Blood. 2001;98:2403–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI (No. 20591158 to Yu. Sa. No. 19591144 and No. 21591251 to Yo. So.), the Science Frontier Program from MEXT, the Twenty-first Century Center of Excellence (COE) program from MEXT, a grant from the Promotion and Mutual Aid Corporation for Private Schools of Japan, a grant from Kansai Medical University (Research grant B), a grant from the Japan Leukemia Research Foundation, a grant from the Takeda Science Foundation (to Yo. So.) and grants from Mitsubishi Pharma Research Foundation (to Yu. Sa. and Yo. So.). The authors thank Takao Kohno for his expert animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Sasaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12185_2009_451_MOESM1_ESM.jpg

Supplemental Figure 1. Immunocytological detection of CXCR4. Unfractionated BM cells were visualized to express CXCR4, however, the level of CXCR4 expression on KSL cells was below the detection threshold using confocal microscopy. Of note, control antibody staining did not generate any significant background that might mask the specific staining by anti-CXCR4 antibody. The bars indicate 5 μm. (JPG 28 kb)

About this article

Cite this article

Sasaki, Y., Matsuoka, Y., Hase, M. et al. Marginal expression of CXCR4 on c-kit+Sca-1+Lineage hematopoietic stem/progenitor cells. Int J Hematol 90, 553–560 (2009). https://doi.org/10.1007/s12185-009-0451-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-009-0451-x

Keywords

Navigation