Skip to main content
Log in

Possible involvement of RasGRP4 in leukemogenesis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

It is now conceivable that leukemogenesis requires two types of mutations, class I and class II mutations. We previously established a mouse bone marrow-derived HF6, an IL-3-dependent cell line, that was immortalized by a class II mutation MLL/SEPT6 and can be fully transformed by class I mutations such as FLT3 mutants. To understand the molecular mechanism of leukemogenesis, particularly progression of myelodysplastic syndrome (MDS) to acute leukemia, we made cDNA libraries from the samples of patients and screened them by expression-cloning to detect class I mutations that render HF6 cells factor-independent. We identified RasGRP4, an activator of Ras, as a candidate for class I mutation from three of six patients (MDS/MPD = 1, MDS-RA = 1, MDS/AML = 2, CMMoL/AML = 1 and AML-M2 = 1). To investigate the potential roles of RasGRP4 in leukemogenesis, we tested its in vivo effect in a mouse bone marrow transplantation (BMT) model. C57BL/6J mice transplanted with RasGRP4-transduced primary bone marrow cells died of T cell leukemia, myeloid leukemia, or myeloid leukemia with T cell leukemia. To further examine if the combination of class I and class II mutations accelerated leukemic transformation, we performed a mouse BMT model in which both AML1 mutant (S291fsX300) and RasGRP4 were transduced into bone marrow cells. The double transduction led to early onset of T cell leukemia but not of AML in the transplanted mice when compared to transduction of RasGRP4 alone. Thus, we have identified RasGRP4 as a gene potentially involved in leukemogenesis and suggest that RasGRP4 cooperates with AML1 mutations in T cell leukemogenesis as a class I mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beghini A, Peterlongo P, Ripamonti CB, Larizza L, Cairoli R, Morra E, et al. C-kit mutations in core binding factor leukemias. Blood. 2000;95:726–7.

    CAS  PubMed  Google Scholar 

  2. Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX, et al. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA. 2005;102:1104–9. doi:10.1073/pnas.0408831102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shimada A, Taki T, Tabuchi K, Tawa A, Horibe K, Tsuchida M, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006;107:1806–9. doi:10.1182/blood-2005-08-3408.

    Article  CAS  PubMed  Google Scholar 

  4. Yamashita N, Osato M, Huang L, Yanagida M, Kogan SC, Iwasaki M, et al. Haploinsufficiency of Runx1/AML1 promotes myeloid features and leukemogenesis in BXH2 mice. Br J Haematol. 2005;131:495–507. doi:10.1111/j.1365-2141.2005.05793.x.

    Article  CAS  PubMed  Google Scholar 

  5. Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol. 2003;121:775–7. doi:10.1046/j.1365-2141.2003.04362.x.

    Article  CAS  PubMed  Google Scholar 

  6. Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20:965–70. doi:10.1038/sj.leu.2404188.

    Article  CAS  PubMed  Google Scholar 

  7. Beghini A, Ripamonti CB, Cairoli R, Cazzaniga G, Colapietro P, Elice F, et al. KIT activating mutations: incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication. Haematologica. 2004;89:920–5.

    CAS  PubMed  Google Scholar 

  8. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2005;19:2232–40. doi:10.1038/sj.leu.2404009.

    Article  CAS  PubMed  Google Scholar 

  9. Niimi H, Harada H, Harada Y, Ding Y, Imagawa J, Inaba T, et al. Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Leukemia. 2006;20:635–44. doi:10.1038/sj.leu.2404136.

    Article  CAS  PubMed  Google Scholar 

  10. Matsuno N, Osato M, Yamashita N, Yanagida M, Nanri T, Fukushima T, et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia. 2003;17:2492–9. doi:10.1038/sj.leu.2403160.

    Article  CAS  PubMed  Google Scholar 

  11. Roumier C, Eclache V, Imbert M, Davi F, MacIntyre E, Garand R, et al. M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Français d’Hématologie Cellulaire (GFHC) and the Groupe Français de Cytogénétique Hématologique (GFCH). Blood. 2003;101:1277–83. doi:10.1182/blood-2002-05-1474.

    Article  CAS  PubMed  Google Scholar 

  12. Callens C, Chevret S, Cayuela JM, Cassinat B, Raffoux E, de Botton S, et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia. 2005;19:1153–60. doi:10.1038/sj.leu.2403790.

    Article  CAS  PubMed  Google Scholar 

  13. Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 2005;106:3768–76. doi:10.1182/blood-2005-04-1746.

    Article  CAS  PubMed  Google Scholar 

  14. Arrigoni P, Beretta C, Silvestri D, Rossi V, Rizzari C, Valsecchi MG, et al. FLT3 internal tandem duplication in childhood acute myeloid leukaemia: association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol. 2003;120:89–92. doi:10.1046/j.1365-2141.2003.04032.x.

    Article  CAS  PubMed  Google Scholar 

  15. Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 2002;16:2185–9. doi:10.1038/sj.leu.2402723.

    Article  CAS  PubMed  Google Scholar 

  16. Kainz B, Heintel D, Marculescu R, Schwarzinger I, Sperr W, Le T, et al. Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). Hematol J. 2002;3:283–9. doi:10.1038/sj.thj.6200196.

    Article  CAS  PubMed  Google Scholar 

  17. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103:1085–8. doi:10.1182/blood-2003-02-0418.

    Article  CAS  PubMed  Google Scholar 

  18. Liang DC, Shih LY, Fu JF, Li HY, Wang HI, Hung IJ, et al. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer. 2006;106:950–6. doi:10.1002/cncr.21687.

    Article  CAS  PubMed  Google Scholar 

  19. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111:2776–84. doi:10.1182/blood-2007-08-109090.

    Article  CAS  PubMed  Google Scholar 

  20. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074–80.

    CAS  PubMed  Google Scholar 

  21. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97:3589–95. doi:10.1182/blood.V97.11.3589.

    Article  CAS  PubMed  Google Scholar 

  22. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP, et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA. 2002;99:8283–8. doi:10.1073/pnas.122233699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Warner JK, Wang JC, Takenaka K, Doulatov S, McKenzie JL, Harrington L, et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia. 2005;19:1794–805. doi:10.1038/sj.leu.2403917.

    Article  CAS  PubMed  Google Scholar 

  24. Gilliland DG, Griffin JD. Role of FLT3 in leukemia. Curr Opin Hematol. 2002;9:274–81. doi:10.1097/00062752-200207000-00003.

    Article  PubMed  Google Scholar 

  25. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest. 2005;115:2159–68. doi:10.1172/JCI24225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cuenco GM, Ren R. Cooperation of BCR-ABL and AML1/MDS1/EVI1 in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene. 2001;20:8236–48. doi:10.1038/sj.onc.1205095.

    Article  CAS  PubMed  Google Scholar 

  27. Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T, et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest. 2005;115:919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H, et al. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood. 2006;108:1708–15. doi:10.1182/blood-2006-04-015040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reuther GW, Lambert QT, Rebhun JF, Caligiuri MA, Quilliam LA, Der CJ. RasGRP4 is a novel Ras activator isolated from acute myeloid leukemia. J Biol Chem. 2002;277:30508–14. doi:10.1074/jbc.M111330200.

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Li L, Wong GW, Krilis SA, Madhusudhan MS, Sali A, et al. RasGRP4, a new mast cell-restricted Ras guanine nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs Identification of defective variants of this signaling protein in asthma, mastocytosis, and mast cell leukemia patients and demonstration of the importance of RasGRP4 in mast cell development and function. J Biol Chem. 2002;277:25756–74. doi:10.1074/jbc.M202575200.

    Article  CAS  PubMed  Google Scholar 

  31. Kitamura T, Onishi M, Kinoshita S, Shibuya A, Miyajima A, Nolan GP. Efficient screening of retroviral cDNA expression libraries. Proc Natl Acad Sci USA. 1995;92:9146–50. doi:10.1073/pnas.92.20.9146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol. 2003;31:1007–14.

    Article  CAS  PubMed  Google Scholar 

  33. Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–24. doi:10.1182/blood-2003-09-3074.

    Article  CAS  PubMed  Google Scholar 

  34. Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Oki T, Shibata F, et al. Functional analysis of activating receptor LMIR4 as a counterpart of inhibitory receptor LMIR3. J Biol Chem. 2007;282:17997–8008. doi:10.1074/jbc.M701100200.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y, et al. AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood. 2008;111:4297–308. doi:10.1182/blood-2007-01-068346.

    Article  CAS  PubMed  Google Scholar 

  36. Reuss-Borst MA, Bühring HJ, Schmidt H, Müller CA. AML: immunophenotypic heterogeneity and prognostic significance of c-kit expression. Leukemia. 1994;8:258–63.

    CAS  PubMed  Google Scholar 

  37. Chinen Y, Taki T, Nishida K, Shimizu D, Okuda T, Yoshida N, et al. Identification of the novel AML1 fusion partner gene, LAF4, a fusion partner of MLL, in childhood T cell acute lymphoblastic leukemia with t(2;21)(q11;q22) by bubble PCR method for cDNA. Oncogene. 2008;27:2249–56. doi:10.1038/sj.onc.1210857.

    Article  CAS  PubMed  Google Scholar 

  38. Mikhail FM, Coignet L, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM, et al. A novel gene, FGA7, is fused to RUNX1/AML1 in a t(4;21)(q28;q22) in a patient with T cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2004;39:110–8. doi:10.1002/gcc.10302.

    Article  CAS  PubMed  Google Scholar 

  39. Kitamura T. New experimental approaches in retrovirus-mediated expression screening. Int J Hematol. 1998;67:351–9. doi:10.1016/S0925-5710(98)00025-5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fumi Shibata for technical assistance and Dr. Yusuke Nakamura for the SNPs information of RasGRP4. This work was supported by a grant-in-aid for Cancer Research supported by the Ministry of Health, Labor and Welfare and a grant from the Vehicle Racing Commemorative Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Kitamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1 (PPT 338 kb)

About this article

Cite this article

Watanabe-Okochi, N., Oki, T., Komeno, Y. et al. Possible involvement of RasGRP4 in leukemogenesis. Int J Hematol 89, 470–481 (2009). https://doi.org/10.1007/s12185-009-0299-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-009-0299-0

Keywords

Navigation