Skip to main content

Advertisement

Log in

Efficient retroviral transduction of human B-lymphoid and myeloid progenitors: marked inhibition of their growth by the Pax5 transgene

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

We applied a coculture system for the genetic manipulation of human B-lymphoid and myeloid progenitor cells using murine bone marrow stromal cell support, and investigated the effects of forced Pax5 expression in both cell types. Cytokine-stimulated cord blood CD34+ cells could be transduced at 85% efficiency and 95% cell viability by a single 24-h infection with RD114-pseudotyped retroviral vectors, produced by the packaging cell line Plat-F and bicistronic vector plasmids pMXs-Ig, pMYs-Ig, or pMCs-Ig, encoding EGFP. Infected CD34+ cells were seeded onto HESS-5 cells in the presence of stem cell factor and granulocyte colony-stimulating factor, allowing the extensive production of B progenitors and granulocytic cells. We examined the cell number and CD34, CD33, CD19, and CD20 lambda and kappa expressions by flow cytometry. Ectopic expression of Pax5 in CD34+ cells resulted in small myeloid progenitors coexpressing CD33 and CD19 and inhibited myeloid differentiation. After 6 weeks, the number of Pax5-transduced CD19+ cells was 40-fold lower than that of control cells. However, the expression of CD20 and the κ/λ chain on Pax5-transduced CD19+ cells suggests that the Pax5 transgene may not interfere with their differentiation. This report is the first to describe the effects of forced Pax5 expression in human hematopoietic progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schebesta M, Heavey B, Busslinger M. Transcriptional control of B-cell development. Curr Opin Immunol. 2002;14:216–23.

    Article  CAS  PubMed  Google Scholar 

  2. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556–62.

    Article  CAS  PubMed  Google Scholar 

  3. Okabe T, Watanabe T, Kudo A. A pre-B- and B cell-specific DNA-binding protein, EBB-1, which binds to the promoter of the VpreB1 gene. Eur J Immunol. 1992;22:37–43.

    Article  CAS  PubMed  Google Scholar 

  4. Schebesta M, Pfeffer PL, Busslinger M. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity. 2002;17:473–85.

    Article  CAS  PubMed  Google Scholar 

  5. Nutt SL, Urbanek P, Rolink A, Busslinger M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 1997;11:476–91.

    Article  CAS  PubMed  Google Scholar 

  6. Vormoor J, Lapidot T, Pflumio F, et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood. 1994;83:2489–97.

    CAS  PubMed  Google Scholar 

  7. Rawlings DJ, Quan S, Hao QL, et al. Differentiation of human CD34+CD38− cord blood stem cells into B cell progenitors in vitro. Exp Hematol. 1997;25:66–72.

    CAS  PubMed  Google Scholar 

  8. Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005;105:617–26.

    Article  CAS  PubMed  Google Scholar 

  9. Haddad R, Guardiola P, Izac B, et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood. 2004;104:3918–26.

    Article  CAS  PubMed  Google Scholar 

  10. Hsu CL, King-Fleischman AG, Lai AY, Matsumoto Y, Weissman IL, Kondo M. Antagonistic effect of CCAAT enhancer-binding protein-alpha and Pax5 in myeloid or lymphoid lineage choice in common lymphoid progenitors. Proc Natl Acad Sci USA. 2006;103:672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guenechea G, Gan OI, Inamitsu T, et al. Transduction of human CD34+ CD38− bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther. 2000;1:566–73.

    Article  CAS  PubMed  Google Scholar 

  12. Gatlin J, Melkus MW, Padgett A, Kelly PF, Garcia JV. Engraftment of NOD/SCID mice with human CD34(+) cells transduced by concentrated oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. J Virol. 2001;75:9995–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Challita PM, Skelton D, el-Khoueiry A, Yu XJ, Weinberg K, Kohn DB. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J Virol. 1995;69:748–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng L, Du C, Lavau C, et al. Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny. Blood. 1998;92:83–92.

    CAS  PubMed  Google Scholar 

  15. Pawliuk R, Eaves CJ, Humphries RK. Sustained high-level reconstitution of the hematopoietic system by preselected hematopoietic cells expressing a transduced cell-surface antigen. Hum Gene Ther. 1997;8:1595–604.

    Article  CAS  PubMed  Google Scholar 

  16. Persons DA, Allay JA, Allay ER, et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood. 1997;90:1777–86.

    CAS  PubMed  Google Scholar 

  17. Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE. Expansion of human cord blood CD34(+)CD38(−) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood. 2000;95:102–10.

    CAS  PubMed  Google Scholar 

  18. Kitamura T, Koshino Y, Shibata F, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol. 2003;31:1007–14.

    Article  CAS  PubMed  Google Scholar 

  19. Yang AX, Mejido J, Luo Y, et al. Development of a focused microarray to assess human embryonic stem cell differentiation. Stem Cells Dev. 2005;14:270–84.

    Article  CAS  PubMed  Google Scholar 

  20. Gibson SE, Dong HY, Advani AS, Hsi ED. Expression of the B cell-associated transcription factors PAX5, OCT-2, and BOB.1 in acute myeloid leukemia: associations with B-cell antigen expression and myelomonocytic maturation. Am J Clin Pathol. 2006;126:916–24.

    Article  CAS  PubMed  Google Scholar 

  21. Tiacci E, Pileri S, Orleth A, et al. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res. 2004;64:7399–404.

    Article  CAS  PubMed  Google Scholar 

  22. Grabstein KH, Waldschmidt TJ, Finkelman FD, et al. Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J Exp Med. 1993;178:257–64.

    Article  CAS  PubMed  Google Scholar 

  23. von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med. 1995;181:1519–26.

    Article  Google Scholar 

  24. Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20:394–7.

    Article  CAS  PubMed  Google Scholar 

  25. LeBien TW. Fates of human B-cell precursors. Blood. 2000;96:9–23.

    CAS  PubMed  Google Scholar 

  26. Dittel BN, LeBien TW. The growth response to IL-7 during normal human B cell ontogeny is restricted to B-lineage cells expressing CD34. J Immunol. 1995;154:58–67.

    CAS  PubMed  Google Scholar 

  27. Bain G, Maandag EC, Izon DJ, et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell. 1994;79:885–92.

    Article  CAS  PubMed  Google Scholar 

  28. Xin XQ, Nelson C, Collins L, Dorshkind K. Kinetics of E2A basic helix-loop-helix-protein expression during myelopoiesis and primary B cell differentiation. J Immunol. 1993;151:5398–407.

    CAS  PubMed  Google Scholar 

  29. Voronova AF, Lee F. The E2A and tal-1 helix-loop-helix proteins associate in vivo and are modulated by Id proteins during interleukin 6-induced myeloid differentiation. Proc Natl Acad Sci USA. 1994;91:5952–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kee BL, Quong MW, Murre C. E2A proteins: essential regulators at multiple stages of B-cell development. Immunol Rev. 2000;175:138–49.

    Article  CAS  PubMed  Google Scholar 

  31. Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science. 1990;248:1517–23.

    Article  CAS  PubMed  Google Scholar 

  32. Burrows PD, Stephan RP, Wang YH, Lassoued K, Zhang Z, Cooper MD. The transient expression of pre-B cell receptors governs B cell development. Semin Immunol. 2002;14:343–9.

    Article  CAS  PubMed  Google Scholar 

  33. Fluckiger AC, Sanz E, Garcia-Lloret M, et al. In vitro reconstitution of human B-cell ontogeny: from CD34(+) multipotent progenitors to Ig-secreting cells. Blood. 1998;92:4509–20.

    CAS  PubMed  Google Scholar 

  34. Chiang MY, Monroe JG. BSAP/Pax5A expression blocks survival and expansion of early myeloid cells implicating its involvement in maintaining commitment to the B-lymphocyte lineage. Blood. 1999;94:3621–32.

    CAS  PubMed  Google Scholar 

  35. Cotta CV, Zhang Z, Kim HG, Klug CA. Pax5 determines B- versus T-cell fate and does not block early myeloid-lineage development. Blood. 2003;101:4342–6.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson K, Rusterholz C, Mansson R, et al. Ectopic expression of PAX5 promotes maintenance of biphenotypic myeloid progenitors coexpressing myeloid and B-cell lineage-associated genes. Blood. 2007;109:3697–705.

    Article  CAS  PubMed  Google Scholar 

  37. Sekine R, Kitamura T, Tsuji T, Tojo A. Identification and comparative analysis of Pax5 C-terminal isoforms expressed in human cord blood-derived B cell progenitors. Immunol Lett. 2007;111:21–5.

    Article  CAS  PubMed  Google Scholar 

  38. Linderson Y, Eberhard D, Malin S, Johansson A, Busslinger M, Pettersson S. Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO Rep. 2004;5:291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan. We thank Asuka Tajima for technical assistance and the Tokyo Cord Blood Bank for cord blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arinobu Tojo.

About this article

Cite this article

Sekine, R., Kitamura, T., Tsuji, T. et al. Efficient retroviral transduction of human B-lymphoid and myeloid progenitors: marked inhibition of their growth by the Pax5 transgene. Int J Hematol 87, 351–362 (2008). https://doi.org/10.1007/s12185-008-0082-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-008-0082-7

Keywords

Navigation