Skip to main content
Log in

Identification of amino acid residues responsible for von Willebrand factor binding to sulfatide by charged-to-alanine-scanning mutagenesis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

von Willebrand factor (VWF) performs its hemostatic functions through binding to various proteins. The A1 domain of VWF contains binding sites of not only physiologically important ligands, but also exogenous modulators that induce VWF-platelet aggregation. Sulfatides, 3-sulfated galactosyl ceramides, that are expressed on oligodendrocytes, renal tubular cells, certain tumor cells and platelets, have been suggested to interact with VWF under some pathological conditions. The binding of VWF to sulfatide requires the A1 domain, but its binding sites have not been precisely identified. Here, we report that alanine mutations at Arg1392, Arg1395, Arg1399 and Lys1423 led to decreased VWF–sulfatide binding. These sites have been reported to be the binding sites for platelet membrane glycoprotein (GP) Ib and/or snake venom botrocetin, and, interestingly, are identical to the monoclonal antibody (mAb) NMC4 epitope previously reported to inhibit the VWF-GPIb interaction. We observed that NMC4 also inhibited VWF interaction with sulfatides in a dose-dependent manner. Thus, we conclude that VWF binding sites of sulfatide overlap those of platelet GPIb and botrocetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Foster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem. 1987;262:8443–6.

    CAS  PubMed  Google Scholar 

  2. Fujimoto T, Ohara S, Hawiger J. Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets. J Clin Invest. 1982;69:1212–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roth GJ, Titani K, Hoyer LW, Hickey MJ. Localization of binding sites within human von Willebrand factor for monomeric type III collagen. Biochemistry. 1986;25:8357–61.

    Article  CAS  PubMed  Google Scholar 

  4. Kalafatis M, Takahashi Y, Girma JP, Meyer D. Localization of a collagen-interactive domain of human von Willebrand factor between amino acid residues Gly 911 and Glu 1,365. Blood. 1987;70:1577–83.

    CAS  PubMed  Google Scholar 

  5. Lankhof H, van Hoeij M, Schiphorst ME, et al. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb haemost. 1996;75:950–8.

    CAS  PubMed  Google Scholar 

  6. Fujimura Y, Titani K, Holland LZ, et al. von Willebrand factor. A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem. 1986;261:381–5.

    CAS  PubMed  Google Scholar 

  7. Matsushita T, Meyer D, Sadler JE. Localization of von Willebrand factor-binding sites for platelet glycoprotein Ib, botrocetin by charged-to-alanine scanning mutagenesis. J Biol Chem. 2000;275:11044–9.

    Article  CAS  PubMed  Google Scholar 

  8. Matsui T, Hamako J, Matsushita T, Nakayama T, Fujimura Y, Titani K. Binding site on human von Willebrand factor of bitiscetin, a snake venom-derived platelet aggregation inducer. Biochemistry. 2002;41:7939–46.

    Article  CAS  PubMed  Google Scholar 

  9. Fujimura Y, Titani K, Holland LZ, et al. A heparin-binding domain of human von Willebrand factor. Characterization and localization to a tryptic fragment extending from amino acid residue Val-449 to Lys-728. J Biol Chem. 1987;262:1734–9.

    CAS  PubMed  Google Scholar 

  10. Adachi T, Matsushita T, Dong Z, et al. Identification of amino acid residues essential for heparin binding by the A1 domain of human von Willebrand factor. Biochem Biophys Res Commun. 2006;339:1178–83.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts DD, Williams SB, Gralnick HR, Ginsburg V. von Willebrand factor binds specifically to sulfated glycolipids. J Biol Chem. 1986;261:3306–9.

    CAS  PubMed  Google Scholar 

  12. Christophe O, Obert B, Meyer D, Girma JP. The binding domain of von Willebrand factor to sulfatides is distinct from those interacting with glycoprotein Ib, heparin, collagen and resides between amino acid residues Leu 512 and Lys 673. Blood. 1991;78:2310–7.

    CAS  PubMed  Google Scholar 

  13. Borthakur G, Cruz MA, Dong JF, et al. Sulfatides inhibit platelet adhesion to von Willebrand factor in flowing blood. J Thromb Hemost. 2003;1:1288–95.

    Article  CAS  Google Scholar 

  14. Roberts DD, Ginsburg V. Sulfated glycolipids and cell adhesion. Arch Biochem Biophys. 1988;267:405–15.

    Article  CAS  PubMed  Google Scholar 

  15. Aruffo A, Kolanus W, Walz G, Fredman P, Seed B. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell. 1991;67:35–44.

    Article  CAS  PubMed  Google Scholar 

  16. Merten M, Thiagarajan P. Role for sulfatides in platelet aggregation. Circulation. 2001;104:2955–60.

    Article  CAS  PubMed  Google Scholar 

  17. Ishizuka I. Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res. 1997;36:245–319.

    Article  CAS  PubMed  Google Scholar 

  18. Barabino GA, Liu XD, Ewenstein BM, Kaul DK. Anionic polysaccharides inhibit adhesion of sickle erythrocytes to the vascular endothelium and result in improved hemodynamic behavior. Blood. 1999;93:1422–9.

    CAS  PubMed  Google Scholar 

  19. Hillery CA, Du MC, Montgomery RR, Scott JP. Increased adhesion of erythrocytes to components of the extracellular matrix: isolation and characterization of a red blood cell lipid that binds thrombospondin and laminin. Blood. 1996;87:4879–86.

    CAS  PubMed  Google Scholar 

  20. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  PubMed  Google Scholar 

  21. Andrews RK, Booth WJ, Bendall LJ, Brendt MC. The amino acid sequence glutamine-628 to valine-646 within the A1 repeat domain mediates binding of von Willebrand factor to bovine brain sulfatides and equine tendon collagen. Platelets. 1995;6:245–51.

    Article  CAS  PubMed  Google Scholar 

  22. Pietu G, Ribba AS, Cherel G, et al. Epitope mapping of inhibitory monoclonal antibodies to human von Willebrand factor by using recombinant cDNA libraries. Thromb Hemost. 1994;71:788–92.

    CAS  Google Scholar 

  23. Matsushita T, Sadler JE. Identification of amino acid residues essential for von Willebrand factor binding to platelet glycoprotein Ib. Charged-to-alanine scanning mutagenesis of the A1 domain of human von Willebrand factor. J Biol Chem. 1995;270:13406–14.

    Article  CAS  PubMed  Google Scholar 

  24. Nakayama T, Matsushita T, Dong Z, et al. Identification of the regulatory elements of the human von Willebrand factor for binding to platelet GPIb. Importance of structural integrity of the regions flanked by the CYS1272-CYS1458 disulfide bond. J Biol Chem. 2002;277:22063–72.

    Article  CAS  PubMed  Google Scholar 

  25. Favaloro EJ. Sulfatide-binding assay for von Willebrand factor. Detection of von Willebrand’s disease without discrimination of vWD subtypes. Thromb Res. 2000;98:213–9.

    Article  CAS  PubMed  Google Scholar 

  26. Celikel R, Varughese KI, Madhusudan, Yoshioka A, Ware J, Ruggeri ZM. Crystal structure of the von Willebrand factor A1 domain in complex with the function blocking NMC-4 Fab. Nat Struct Biol. 1998;5:189–94.

    Article  CAS  PubMed  Google Scholar 

  27. Fujimura Y, Miyata S, Nishida S, et al. The interaction of botrocetin with normal or variant von Willebrand factor (types IIA and IIB) and its inhibition by monoclonal antibodies that block receptor binding. Thromb Hemost. 1992;68:464–9.

    CAS  Google Scholar 

  28. Fujimura Y, Usami Y, Titani K, et al. Studies on anti-von Willebrand factor (vWF) monoclonal antibody NMC-4, which inhibits both ristocetin- and botrocetin-induced vWF binding to platelet glycoprotein Ib. Blood. 1991;77:113–20.

    CAS  PubMed  Google Scholar 

  29. Christophe O, Rouault C, Obert B, Pietu G, Meyer D, Girma JP. A monoclonal antibody (B724) to von Willebrand factor recognizing an epitope within the A1 disulphide loop (Cys509-Cys695) discriminates between type 2A and type 2B von Willebrand disease. Br J Haematol. 1995;90:195–203.

    Article  CAS  PubMed  Google Scholar 

  30. Kyogashima M. The role of sulfatide in thrombogenesis and haemostasis. Arch Biochem Biophys. 2004;426:157–62.

    Article  CAS  PubMed  Google Scholar 

  31. Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood. 1996;88:2939–50.

    CAS  PubMed  Google Scholar 

  32. Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424.

    Article  CAS  PubMed  Google Scholar 

  33. Kyogashima M, Onaya J, Hara A, Taketomi T. Sulfatide can markedly enhance thrombogenesis in rat deep vein thrombosis model. Glycoconj J. 1998;15:915–22.

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto H, Vreys I, Stassen JM, Yoshimoto R, Vermylen J, Hoylaerts MF. Antagonism of vWF inhibits both injury induced arterial and venous thrombosis in the hamster. Thromb Hemost. 1998;79:202–10.

    CAS  Google Scholar 

  35. Wu YP, Vink T, Schiphorst M, et al. Platelet thrombus formation on collagen at high shear rates is mediated by von Willebrand factor–glycoprotein Ib interaction and inhibited by von Willebrand factor–glycoprotein IIb/IIIa interaction. Arterioscler Thromb Vasc Biol. 2000;20:1661–7.

    Article  CAS  PubMed  Google Scholar 

  36. Emsley J, Cruz M, Handin R, Liddington R. Crystal structure of the von Willebrand factor A1 domain and implications for the binding of platelet glycoprotein Ib. J Biol Chem. 1998;273:10396–401.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Chika Wakamatsu for performing excellent, skilled techniques in molecular biology. Particular gratitude is expressed to Dr. Dominique Meyer for providing information on mAb 701 and B724. We also thank Dr. Wayne Albers for his technical advice regarding the 3D structure, and are grateful to Dr. Sashi Kesavapany for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Matsushita.

About this article

Cite this article

Nakayama, T., Matsushita, T., Yamamoto, K. et al. Identification of amino acid residues responsible for von Willebrand factor binding to sulfatide by charged-to-alanine-scanning mutagenesis. Int J Hematol 87, 363–370 (2008). https://doi.org/10.1007/s12185-008-0065-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-008-0065-8

Keywords

Navigation