International Journal of Hematology

, Volume 87, Issue 3, pp 246–249 | Cite as

Differential expression of HOX genes upon activation of leukocyte sub-populations

Open Access
Original Article


The HOX genes are key determinants of cellular identity both in early development and in the renewal and differentiation of adult blood cells. Although a number of studies have examined the expression of individual HOX genes in defined blood cell lineages, we have undertaken a comprehensive analysis of HOX gene expression in resting and activated lymphocytic and monocytic subpopulations. This has revealed distinct patterns of expression between different cell types and resting and activated states. (Main category A: Erythrocytes, Leukocytes and Hematopoiesis, subcategory: 8: Lymphocytes).


HOX T-lymphocytes B-lymphocytes Monocytes Activation 

1 Introduction

The HOX genes are a family of homeodomain-containing transcription factors that define specific positional identities, both in vertebrate and invertebrate embryos [4]. They are also involved in the regulation of haemopoiesis (reviewed by [13]), and blocking HOX gene function by the use of antisense oligos or gene knock out perturbs a number of different haemopoietic events. Thus for example myeloid, erythroid and lymphoid haemopoiesis are all defective in HoxA9 knock out mice [8], and the antisense ablation of HoxB5, HoxB6, HoxB7 [15], or HoxA5 [5] blocks erythroid differentiation. Forced expression of HOXA10 in CD34+ progenitor cells purified from cord blood results in a significant reduction in the number of B cells and natural killer cells but a marked increase in monocytes [14]. There are also examples of specific regulatory functions for HOX genes, including the modulation of globin transcription by HOXB6 [12]. In addition, HOX genes can also act to regulate the proliferation of haemopoietic stem cells (HSCs). Hence HOXB4 is a strong, positive regulator of HSC self renewal (reviewed by [10]), and an estrogen-dependant version of HOXB8 can be used to drive the production of neutrophils and macrophages from their respective progenitor cells [16].

Despite these studies, relatively little is still known about the expression of HOX genes in the mature blood lineages (reviewed by [6]). In order to address this we purified different cell populations from human peripheral blood on the basis of their expression of the surface markers CD4, CD8, CD14 and CD19 that are present on T-lymphocytes (CD4 and CD8), monocytes, and B-lymphocytes respectively. HOX expression was compared in ‘resting’ cells and cells that had been activated by challenging with specific antigenic stimuli—antibodies against CD2, CD3 and CD28 for CD4+ and CD8+ cells, Lipopolysaccharide for CD14+ cells and anti-IgG for CD19+ cells. Each population of cells underwent proliferation in response to this treatment, as measured by [3H]thymidine incorporation (Fig. 1). RNA was extracted from each cell type and the expression of each of the 39 HOX genes was assed by quantitative PCR (QPCR), relative to the amount of Beta-actin transcript present (Fig. 2).
Fig. 1

Proliferation of activated lymphocyte populations. Proliferation was measured by [3H]thymidine incorporation 4 h after activation. Values shown are the fold increase in incorporation compared to resting cells. Error bars: SEM from triplicate experiments

Fig. 2

HOX gene expression in resting (a) and activated (b) after 6 h, (c) after 24 h) lymphocytic and monocytic populations. Expression was assessed by quantitative PCR and is shown as a relative value to the number of beta-actin transcripts (‘Relative expression’). HOX genes are abbreviated to show only their family and paralogue position, hence HOXA2 is shown as ‘A2’. HOX genes for which no expression was detected are not shown in the figure. Each value shown is the mean from three experiments. Significant changes in expression levels (p < 0.05) 6 and 24 h after activation are marked (*). Error bars: SEM

The highest level of expression is generally shown by the HOXA and HOXC genes, with HOXD genes generally exhibiting a tenfold lower expression level and HOXB genes a 100 fold lower expression level, a feature that is also true for the other cell populations examined. For all of the HOX genes expressed in CD4+ cells there is a significant reduction in HOX expression upon activation. This is particularly striking for the most posterior genes of the HOXA, HOXC and HOXD clusters. A similar pattern is also observed in CD8+ cells, although there is a general reduction in HOX expression with every HOX gene except HOXC10 being present at lower levels in these cells.

There are a number of notable differences between the HOX expression profile of CD14+ cells and the CD4+/CD8+ populations. HOXC4, HOXC6 and HOXC8 are not expressed. The most striking difference though is the change of HOX expression upon activation—in contrast to CD4+/CD8+ cells, CD14+ cells show a large increase in HOXA2, HOXB13, HOXC10, HOXC13, HOXD1 and HOXD9. Other HOX genes such as HOXB4 and HOXA10 show no significant change in expression upon activation, which again contrasts with the response of CD4+/CD8+ cells.

CD19+ cells show a broadly similar pattern of HOX expression to CD14+ cells prior to activation, but have a distinct response to activation. Like CD4+/CD8+ cells, CD19+ cells exhibit a large reduction in expression of most HOX genes with the exception of HOXD10, HOXD11 and HOXD12 that show a very strong increase in expression upon activation.

To our knowledge this is the first comprehensive analysis of HOX gene expression in these leukocyte populations. Taking the data as a whole, each population shows a unique pattern of HOX expression that may define cellular identity. Generally the expression levels are in agreement with those previously reported for individual HOX genes in other studies [6, 7, 9]. However the changes of HOX gene expression upon cellular activation have not previously been reported. The magnitude of these changes is striking, with the activated T cell subsets exhibiting an almost complete loss of expression of many HOX genes especially the more posterior members of the groups (HOXA10, HOXC13, and HOXD12). Conversely, activated monocytic and B-lymphocyte cells show a large increase in expression of the same genes. Given the key regulatory roles of HOX genes it is likely that these changes in expression facilitate the cellular changes associated with activation. One of these is increased proliferation, a response that is known to be mediated by HOX genes in a number of hematopoietic lineages (reviewed by [1]). Indeed the antisense mediated ablation of HOXB2 or HOXB4 in T-lymphocytes was previously shown to block the proliferation of activated cells (Care et al. 1995). Furthermore HOXA10 deficiency causes a severe immunological disturbance in uterine tissues characterised by rapid T cell proliferation and a failure of progesterone-mediated immunosuppression [17]. The HOX genes are also likely to regulate lineage-specific transcription upon activation, and in this context the contrasting expression levels of these genes presumably reflect the dramatically different response of each cell type.

2 Materials and methods

CD4+, CD8+, CD14+ and CD19+ cells were isolated using the Dynabead system (Invitrogen) and cultured as previously described [2]. Quantitative PCR was performed as previously described [11]. [3H]thymidine incorporation was evaluated by a standard procedure. Briefly, 2 μCi of [3H]thymidine (20 Ci/mmol) was added for 4 h to each well. Cells were then recovered, washed, and processed for the determination of TCA precipitable radioactivity. Each evaluation was performed in triplicate. T cell activation was achieved using anti-CD2, anti-CD3 and anti-CD28 antibodies as supplied in the T cell activation/expansion kit (Miltenyi Biotec).


  1. 1.
    Abramovich C, Humphries RK. Hox regulation of normal and leukemic hematopoietic stem cells. Curr Opin Hematol. 2005;12:210–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Biddison WE. Current protocols in cell bioloyg. In: Juan S Bonifacino, Mary Dasso, Joe B Harford, Jennifer Lippincott-Schwartz, Kenneth M. Yamada, editors 1998; Wiley.Google Scholar
  3. 3.
    Carè A, Testa U, Bassani A, Tritarelli E, Montesoro E, Samoggia P, Cianetti L, Peschle C. Coordinate expression and proliferative role of HOXB genes in activated adult T lymphocytes. Mol Cell Biol. 1994;14:4872–7.PubMedGoogle Scholar
  4. 4.
    Carroll SB. Homeotic genes and the evolution of arthropods and chordates. Nature. 1995;376:479–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Fuller JF, McAdara J, Yaron Y, Sakaguchi M, Fraser JK, Gasson JC. Characterization of HOX gene expression during myelopoiesis: role of HOXA5 in lineage commitment and maturation. Blood. 1999;93:3391–400.PubMedGoogle Scholar
  6. 6.
    Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR. The pathophysiology of HOX genes and their role in cancer. J Pathol. 2005;205:154–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Lawrence HJ, Stage KM, Mathews CH, Detmer K, Scibienski R, MacKenzie M, Migliaccio E, Boncinelli E, Largman C. Expression of HOX C homeobox genes in lymphoid cells. Cell Growth Differ. 1993;4:665–9.PubMedGoogle Scholar
  8. 8.
    Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK, Largman C. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood. 1997;89:1922–30.PubMedGoogle Scholar
  9. 9.
    Martinez-Delgado B, Melendez B, Cuadros M, Alvarez J, Castrillo JM, Ruiz De La Parte A, Mollejo M, Bellas C, Diaz R, Lombardia L, Al-Shahrour F, Dominguez O, Cascon A, Robledo M, Rivas C, Benitez J. Expression profiling of T cell lymphomas differentiates peripheral and lymphoblastic lymphomas and defines survival related genes. Clin Cancer Res. 2004;10:4971–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Morgan R. Young blood: Hox genes and haematopoietic stem cells. Trends Genet. 2002;18:345–6.CrossRefGoogle Scholar
  11. 11.
    Morgan R, Maconas Pirard P, Shears L, Sohal J, Pettengell R, Pandha HS. Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res. 2007; 67:5806-13.PubMedCrossRefGoogle Scholar
  12. 12.
    Shen W, Chrobak D, Krishnan K, Lawrence HJ, Largman C. HOXB6 protein is bound to CREB-binding protein and represses globin expression in a DNA binding-dependent, PBX interaction-independent process. J Biol Chem. 2004;279:39895–904.PubMedCrossRefGoogle Scholar
  13. 13.
    Shimamoto T, Ohyashiki K, Toyama K, Takeshita K. Homeobox genes in hematopoiesis and leukemogenesis. Int J Hematol. 1998;67:339–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Taghon T, Stolz F, De Smedt M, Cnockaert M, Verhasselt B, Plum J, Leclercq G. HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood. 2002;99:1197–1204.PubMedCrossRefGoogle Scholar
  15. 15.
    Takeshita K, Bollekens JA, Hijiya N, Ratajczak M, Ruddle FH, Gewirtz AM. A homeobox gene of the Antennapedia class is required for human adult erythropoiesis. Proc Natl Acad Sci U S A. 1993;90:3535–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang GG, Calvo KR, Pasillas MP, Sykes DB, Hacker H, Kamps MP. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nat Methods. 2006;3:287–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Yao MW, Lim H, Schust DJ, Choe SE, Farago A, Ding Y, Michaud S, Church GM, Maas RL. Gene expression profiling reveals progesterone-mediated cell cycle and immunoregulatory roles of Hoxa-10 in the preimplantation uterus. Mol Endocrinol. 2003;17:610–27.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2008

Authors and Affiliations

  1. 1.Postgraduate Medical SchoolUniversity of SurreyGuildfordUK
  2. 2.School of Life ScienceKingston UniversityKingston upon ThamesUK

Personalised recommendations