Petroleum Science

, Volume 6, Issue 1, pp 17–20 | Cite as

Calculation of depth to detachment and its significance in the Kuqa Depression: A discussion

  • Shiqin Li
  • Lei Feng
  • Pengcheng Tang
  • Gang Rao
  • Yahong Bao
Article

Abstract

We analyze the excess area and depth to detachment method developed by Epard and Groshong (1993), and apply it to the sand box model of Ge et al (2004) to illustrate that inadequate consideration will affect the calculation of true depth to detachment. Using the data of Yu et al (2006) to fit linear regression lines, we obtain the depths to detachment of Kela-2, Misikantage anticline and Dongqiu-8 structures, 115.74km, 14.17km, and 75.48km below the reference level (Cretaceous bottom) respectively with the excess area intercept equal to zero. However, the calculation results of depth to detachment in Yu et al (2006) are based on excess area intercept unequal to zero.

Key words

Excess area depth to detachment Kuqa Depression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulnes M and Poblet J. Detachment folds with fixed hinges and variable detachment depth, northeastern Brooks Range, Alaska: Discussion. Journal of Structural Geology. 1998. 20(11): 1587–1590CrossRefGoogle Scholar
  2. Bulnes M and Poblet J. Estimating the detachment depth in cross sections involving detachment folds. Geological Magazine. 1999. 136(4): 395–412CrossRefGoogle Scholar
  3. Chamberlin R T. The Appalachian folds of central Pennsylvania. Journal of Geology. 1910. 27: 228–251CrossRefGoogle Scholar
  4. Epard J L and Groshong R H. Excess area and depth to detachment. AAPG Bulletin. 1993. 77(8): 1291–1302Google Scholar
  5. Ge H X, Vendeville B C and Jackson M P A. Physical models of thick-skinned contractional salt tectonics in a foreland fold-and-thrust belt. Geological Journal of China Universities. 2004. 10(1): 39–49 (in Chinese)Google Scholar
  6. Homza T X and Wallace W K. Geometric and kinematic models for detachment folds with fixed and variable detachment depths. Journal of Structural Geology. 1995. 17(4): 575–588CrossRefGoogle Scholar
  7. Homza T X and Wallace W K. Detachment folds with fixed hinges and variable detachment depths, northeastern Brooks Range, Alaska. Journal of Structural Geology. 1997. 19(3–4): 337–354CrossRefGoogle Scholar
  8. Hubert-Ferrari A, Suppe J, Gonzalez-Mieres R, et al. Mechanisms of active folding of the landscape (southern Tian Shan, China). Journal of Geophysical Research. 2007. 112, B03S09Google Scholar
  9. Mitra S and Namson J S. Equal-area balancing. American Journal of Science. 1989. 289: 563–599CrossRefGoogle Scholar
  10. Suppe J. Geometry and kinematics of fault-bend folding. American Journal of Science. 1983. 283: 684–721CrossRefGoogle Scholar
  11. Wallace W K and Homza T X. Detachment folds with fixed hinges and variable detachment depths, northeastern Brooks Range, Alaska: Reply. Journal of Structural Geology. 1998. 20(11): 1591–1595CrossRefGoogle Scholar
  12. Wilkerson M S, Smaltz S M, Bowman D R, et al. 2-D and 3-D modeling of detachment folds with hinterland inflation: A natural example from the Monterrey Salient, northeastern Mexico. Journal of Structural Geology. 2007. 29(1): 73–85CrossRefGoogle Scholar
  13. Yu Y X, Tang L J, Yin J Y, et al. Calculation of depth to detachment and its significance in the Kuqa Depression. Petroleum Science. 2006. 3(2): 34–38Google Scholar

Copyright information

© China University of Petroleum (Beijing) and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Shiqin Li
    • 1
  • Lei Feng
    • 2
  • Pengcheng Tang
    • 1
  • Gang Rao
    • 1
  • Yahong Bao
    • 3
  1. 1.Department of Earth SciencesZhejiang UniversityHangzhouChina
  2. 2.Research Institute of Exploration and Development, Tarim Oilfield CompanyPetroChinaKorlaChina
  3. 3.Archives of Tarim Oilfield CompanyPetroChinaKorlaChina

Personalised recommendations