Skip to main content

Advertisement

Log in

Anwendungen von künstlicher Intelligenz in der diagnostischen kardialen Bildanalyse

Utilization of artificial intelligence in diagnostic cardiac imaging analysis

  • Schwerpunkt
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Klinisch verfügbare KI(künstliche Intelligenz)-basierte Lösungen dienen der Prozessoptimierung und der Objektivierung bildbasierter Quantifizierung für die kardiale Diagnostik. Damit eröffnet sich eine breitere Anwendung der heutigen Hochleistungsmedizin auch außerhalb von universitären Zentren. In dieser Übersichtsarbeit wird über die Praxisrelevanz sowie die Anwendung der KI in der Bildvorverarbeitung und -segmentierung, der Diagnostik, des Phenotypings für die klinische Entscheidungsunterstützung sowie über den heutigen Stand des Datenschutzes und der interdisziplinären Zusammenarbeit berichtet. Die Weiterentwicklung hochqualitativer KI-basierter Lösungen unter Berücksichtigung aktueller Datenschutzvorgaben erfordert eine multidisziplinäre Zusammenarbeit und den Aufbau geeigneter Forschungsinfrastrukturen. KI-Anwendungen in der diagnostischen kardialen Bildanalyse ohne klinische Daten der Patienten und die letztendlich entscheidende kardiologische Expertise erscheinen für eine valide Befundung und damit Therapieentscheidung bei kardiologischen Patienten nicht sinnvoll.

Abstract

Clinically available artificial intelligence (AI)-based solutions serve to optimize processes and objectify image-based quantification for cardiac diagnostics. This opens up a broader application of today’s high-performance medicine also outside university centers. This overview article reports on the practical relevance and the application of AI in image preprocessing and segmentation, the diagnostics, phenotyping, clinical decision support and on the current status of data protection and interdisciplinary cooperation. The further development of high-quality AI-based solutions, taking current data protection regulations into account, requires multidisciplinary cooperation and the development of suitable research infrastructures. The applications of AI in diagnostic cardiac image analysis without clinical patient data and without the ultimately decisive cardiologic expertise do not appear to make sense for a valid diagnosis and thus treatment decision in cardiologic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bernard O et al (2018) Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging 37(11):2514–2525

    Article  PubMed  Google Scholar 

  2. Friedrich S et al (2021) Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: a systematic review with recommendations. Eur Heart J 2(3):424–436

    Google Scholar 

  3. Ruijsink B et al (2020) Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC Cardiovasc Imaging 13(3):684–695

    Article  PubMed  Google Scholar 

  4. Zhou J et al (2021) Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound 19(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fotaki A et al (2022) Artificial intelligence in cardiac MRI: is clinical adoption forthcoming? Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.818765

    Article  PubMed  PubMed Central  Google Scholar 

  6. Raisi-Estabragh Z et al (2021) Cardiovascular magnetic resonance imaging in the UK Biobank: a major international health research resource. Eur Heart J Cardiovasc Imaging 22(3):251–258

    Article  PubMed  Google Scholar 

  7. Diaz O et al (2021) Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools. Phys Med 83:25–37

    Article  PubMed  Google Scholar 

  8. Ghorbani A et al (2020) Deep learning interpretation of echocardiograms. NP Digit Med 3:10

    Article  Google Scholar 

  9. Iyer K et al (2021) AngioNet: a convolutional neural network for vessel segmentation in X‑ray angiography. Sci Rep 11(1):18066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berhane H et al (2020) Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning. Magn Reson Med 84(4):2204–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haji-Valizadeh H et al (2021) Highly accelerated free-breathing real-time phase contrast cardiovascular MRI via complex-difference deep learning. Magn Reson Med 86(2):804–819

    Article  PubMed  Google Scholar 

  12. Zwanenburg A et al (2020) The image biomarker standardization initiative: standardized quantitative Radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338

    Article  PubMed  Google Scholar 

  13. Baessler B et al (2018) Cardiac MRI texture analysis of T1 and T2 maps in patients with infarctlike acute myocarditis. Radiology 289(2):357–365

    Article  PubMed  Google Scholar 

  14. Mannil M et al (2020) Artificial intelligence and texture analysis in cardiac imaging. Curr Cardiol Rep 22(11):131

    Article  PubMed  Google Scholar 

  15. Murgia A et al (2020) Cardiac computed tomography radiomics: an emerging tool for the non-invasive assessment of coronary atherosclerosis. Cardiovasc Diagn Ther 10(6):2005–2017

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu P et al (2021) Radiomics: the next frontier of cardiac computed tomography. Circ Cardiovasc Imaging 14(3):e11747

    Article  PubMed  Google Scholar 

  17. Huellebrand MI, Tautz L, Kelle S, Hennemuth A (2022) A collaborative approach for the development and application of machine learning solutions for CMR-based cardiac disease classification. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.829512

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tromp J et al (2022) Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit Health 4(1):e46–e54

    Article  PubMed  Google Scholar 

  19. Hirata Y et al (2020) Deep learning for screening of pulmonary hypertension using standard chest X‑ray. Eur Heart J 41(Supplement_2):ehaa946.2246

    Article  Google Scholar 

  20. Jeong H‑G et al (2021) Classification of cardioembolic stroke based on a deep neural network using chest radiographs. EBioMedicine 69:103466

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ponikowski P et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975

    Article  PubMed  Google Scholar 

  22. Kameshima H et al (2021) A phenotyping of diastolic function by machine learning improves prediction of clinical outcomes in heart failure. Front Cardiovasc Med 8:755109

    Article  PubMed  PubMed Central  Google Scholar 

  23. Woolley RJ et al (2021) Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction. Eur J Heart Fail 23(6):983–991

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez-Martinez S et al (2018) Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction. Circ Cardiovasc Imaging 11(4):e7138

    Article  PubMed  Google Scholar 

  25. Assadi H et al (2021) Cardiac MRI for the prognostication of heart failure with preserved ejection fraction: A systematic review and meta-analysis. Magn Reson Imaging 76:116–122

    Article  PubMed  PubMed Central  Google Scholar 

  26. Doeblin P et al (2019) CMR tissue characterization in patients with HFmrEF. J Clin Med 8(11):1877. https://doi.org/10.3390/jcm8111877

    Article  CAS  PubMed Central  Google Scholar 

  27. Bonde A et al (2021) Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study. Lancet Digit Health 3(8):e471–e485

    Article  PubMed  Google Scholar 

  28. Meyer A et al (2018) Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med 6(12):905–914

    Article  PubMed  Google Scholar 

  29. Nagueh SF et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 29(4):277–314

    Article  PubMed  Google Scholar 

  30. DuMont Schütte A et al (2021) Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation. NPJ Digit Med 4(1):141

    Article  PubMed  PubMed Central  Google Scholar 

  31. Diller G‑P et al (2020) Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease. BMC Med Imaging 20(1):113

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ferdian E et al (2022) WSSNet: aortic wall shear stress estimation using deep learning on 4D flow MRI. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.769927

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thamsen B et al (2021) Synthetic database of aortic morphometry and hemodynamics: overcoming medical imaging data availability. IEEE Trans Med Imaging 40(5):1438–1449

    Article  CAS  PubMed  Google Scholar 

  34. Scherer J et al (2020) Joint imaging platform for federated clinical data analytics. JCO Clin Cancer Inform 4:1027–1038

    Article  PubMed  Google Scholar 

  35. https://openaccess.thecvf.com/content/ICCV2021/html/Ma_Self-Supervised_Vessel_Segmentation_via_Adversarial_Learning_ICCV_2021_paper.html

  36. https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html

  37. http://emidec.com/dataset

Download references

Finanzierung

Diese Arbeit wurde teilweise von der Deutschen Forschungsgemeinschaft (DFG) finanziert – SFB-1470 – B06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Hennemuth.

Ethics declarations

Interessenkonflikt

A. Hennemuth, M. Hüllebrand, P. Doeblin, N. Krüger und S. Kelle geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennemuth, A., Hüllebrand, M., Doeblin, P. et al. Anwendungen von künstlicher Intelligenz in der diagnostischen kardialen Bildanalyse. Kardiologe 16, 72–81 (2022). https://doi.org/10.1007/s12181-022-00548-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-022-00548-2

Schlüsselwörter

Keywords

Navigation