Sicherheit von nicht-aktiven kardiovaskulären Implantaten bei MRT-Untersuchungen – Update 2021

Stellungnahme der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung

Safety of non-active cardiovascular implants in MRI examinations: Update 2021

Statement of the German Cardiac Society

Zusammenfassung

Diese Stellungnahme der Deutschen Gesellschaft für Kardiologie fasst Informationen und Empfehlungen zum Umgang mit nicht-aktiven (auch genannt „passiven“) kardiovaskulären Implantaten (z. B. Koronarstents) bei der Magnetresonanztomographie (MRT) zusammen. Es wird empfohlen, bei jedem Patienten vor einer MRT-Untersuchung das Vorhandensein von nicht-aktiven kardiovaskulären Implantaten zu erfragen, gegebenenfalls detaillierte Implantat-Informationen einzuholen und schließlich unter individueller Nutzen-Risiko-Abwägung die Entscheidung für oder gegen die MRT-Untersuchung zu treffen. Bei der MRT-Untersuchung sind gegebenenfalls Anpassungen der technischen MRT-Parameter oder des Untersuchungsablaufs zu berücksichtigen. Diese Aufgaben obliegen dem die MRT-Untersuchung durchführenden Arzt. Er wird unterstützt, indem der Patient selbst sowie der überweisende Arzt die notwendigen Informationen rechtzeitig zur Verfügung stellen. Dabei ist die Verwendung von Implantatpässen und Implantatdatenbanken hilfreich. Werden diese Vorsichtsmaßnahmen berücksichtigt, sind nach derzeitigem Kenntnisstand MRT-Untersuchungen bei Patienten mit nicht-aktiven kardiovaskulären Implantaten im Allgemeinen ohne gravierende Sicherheitsbedenken durchführbar.

Abstract

This statement of the German Cardiac Society summarizes information and recommendations how to deal with non-active (i.e. passive) cardiovascular implants (e.g. coronary stents) in magnetic resonance imaging (MRI). It is recommended to check for the presence of any non-active cardiovascular implant in every patient before MRI, to seek for detailed implant-specific information if appropriate and finally to decide in favour or against the MRI after careful risk-benefit analysis. When performing the MRI, modifications of the technical MRI parameters and of the course of the exam may be necessary. The physician who performs the MRI is responsible for these tasks and should be supported by the patient and by the referring physician by providing all relevant information in time. The use of implant passes and implant databases may help to keep the procedure efficient and safe. Under consideration of these precautionary measures, MRI exams can be generally performed without serious safety concerns in patients with non-active cardiovascular implants.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    Mühlenweg M, Schaefers G (2015) MR implant labelling and its use in clinical MRI practice. Radiologe 55:682–690

    PubMed  Article  Google Scholar 

  2. 2.

    Schaefers G (2019) Test methods to determine magnetic resonance (MR) safety and MR image compatibility of implants/devices. Radiologe 59:875–884

    PubMed  Article  Google Scholar 

  3. 3.

    EN IEC 60601-2-33 (2010) Medical electrical equipment – Part 2–33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis. IEC, Geneva

    Google Scholar 

  4. 4.

    DIN 6876:2019-05 (2019) Operation of medical magnetic resonance systems. German Institute for Standardization, Berlin

    Google Scholar 

  5. 5.

    IEC 62570 (2014) Standard practice for marking medical devices and other items for safety in the magnetic resonance environment. IEC, Geneva

    Google Scholar 

  6. 6.

    Sommer T, Bauer W, Fischbach K, Kolb C, Luechinger R, Wiegand U et al (2017) MR-Untersuchungen bei Patienten mit Herzschrittmachern und implantierbaren Kardioverter-Defibrillatoren. Konsensuspapier der Deutschen Gesellschaft für Kardiologie (DGK) und der Deutschen Röntgengesellschaft (DRG). Kardiologe 11:97–113

    Article  Google Scholar 

  7. 7.

    von Knobelsdorff F, Bauer W, Deneke T, Fleck E, Rolf A, Schulz-Menger J et al (2019) Empfehlungen zu kardialen MRT-Untersuchungen bei Patienten mit Herzschrittmachern und implantierbaren Kardioverter-Defibrillatoren. Kardiologe 13:75–86

    Article  Google Scholar 

  8. 8.

    Müllerleile K, Kolb C, Rittger H, Rybak K, Tillmanns C, Wiegand U et al (2015) Passive kardiovaskuläre Implantate in der Magnetresonanztomographie. Stellungnahme der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung zur Sicherheit der Magnetresonanztomographie. Kardiologe 9:303–309

    Article  CAS  Google Scholar 

  9. 9.

    Mühlenweg M, Schaefers G, Trattnig S (2015) Physical interactions in MRI: some rules of thumb for their reduction. Radiologe 55:638–648

    PubMed  Article  Google Scholar 

  10. 10.

    Schick F (2019) MRI-Interactions with magnetically active and electrically conductive material. Radiologe 59:860–868

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Shellock FG (2020) Reference manual for magnetic resonance safety, implants, and devices: 2020 edition

    Google Scholar 

  12. 12.

    MRI Safety (2021) Webpräsenz. http://www.mrisafety.com. Zugegriffen: 30 Nov 2020

  13. 13.

    Levine GN, Gomes AS, Arai AE, Bluemke DA, Flamm SD, Kanal E et al (2007) Safety of magnetic resonance imaging in patients with cardiovascular devices: an American Heart Association scientific statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention: endorsed by the American College of Cardiology Foundation, the North American Society for Cardiac Imaging, and the Society for Cardiovascular Magnetic Resonance. Circulation 116:2878–2891

    PubMed  Article  Google Scholar 

  14. 14.

    Beshchasna N, Saqib M, Kraskiewicz H, Wasyluk Ł, Kuzmin O, Duta OC et al (2020) Recent advances in manufacturing innovative stents. Pharmaceutics 13:349

    Article  CAS  Google Scholar 

  15. 15.

    Gerber TC, Fasseas P, Lennon RJ, Valeti VU, Wood CP, Breen JF et al (2003) Clinical safety of magnetic resonance imaging early after coronary artery stent placement. J Am Coll Cardiol 42:1295–1298

    PubMed  Article  Google Scholar 

  16. 16.

    Porto I, Selvanayagam J, Ashar V, Neubauer S, Banning AP (2005) Safety of magnetic resonance imaging one to three days after bare metal and drug-eluting stent implantation. Am J Cardiol 96:366–368

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Shellock FG (2017) Guidelines for the management of patients with coronary artery stents referred for MRI procedures

    Google Scholar 

  18. 18.

    Watanabe AT, Teitelbaum GP, Gomes AS, Roehm JO (1990) MR imaging of the bird’s nest filter. Radiology 177:578–579

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Kiproff PM, Deeb ZL, Contractor FM, Khoury MB (1991) Magnetic resonance characteristics of the LGM vena cava filter: technical note. Cardiovasc Intervent Radiol 14:254–255

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kim D, Edelman RR, Margolin CJ, Porter DH, McArdle CR, Schlam BW et al (1992) The Simon nitinol filter: evaluation by MR and ultrasound. Angiology 43:541–548

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Grassi CJ, Matsumoto AH, Teitelbaum GP (1992) Vena caval occlusion after Simon nitinol filter placement: identification with MR imaging in patients with malignancy. J Vasc Interv Radiol 3:535–539

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Bartels LW, Bakker CJ, Viergever MA (2002) Improved lumen visualization in metallic vascular implants by reducing RF artifacts. Magn Reson Med 47:171–180

    PubMed  Article  Google Scholar 

  23. 23.

    Liebman CE, Messersmith RN, Levin DN, Lu CT (1988) MR imaging of inferior vena caval filters: safety and artifacts. AJR Am J Roentgenol 150:1174–1176

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Slesnick TC, Schreier J, Soriano BD, Kutty S, Nutting AC, Kim DW et al (2016) Safety of magnetic resonance imaging after implantation of stainless steel embolization coils. Pediatr Cardiol 37(1):62–67

    PubMed  Article  Google Scholar 

  25. 25.

    Shellock FG, Detrick MS, Brant-Zawadski MN (1997) MR compatibility of Guglielmi detachable coils. Radiology 203:568–570

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Marshall MW, Teitelbaum GP, Kim HS, Deveikis J (1991) Ferromagnetism and magnetic resonance artifacts of platinum embolization microcoils. Cardiovasc Intervent Radiol 14:163–166

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Hartman J, Nguyen T, Larsen D, Teitelbaum GP (1997) MR artifacts, heat production, and ferromagnetism of Guglielmi detachable coils. AJNR Am J Neuroradiol 18:497–501

    CAS  PubMed  Google Scholar 

  28. 28.

    Hennemeyer CT, Wicklow K, Feinberg DA, Derdeyn CP (2001) In vitro evaluation of platinum Guglielmi detachable coils at 3 T with a porcine model: safety issues and artifacts. Radiology 2019:732–737

    Article  Google Scholar 

  29. 29.

    Shellock FG, Gounis M, Wakhloo A (2005) Detachable coil for cerebral aneurysms: in vitro evaluation of magnetic field interactions, heating, and artifacts at 3T. AJNR Am J Neuroradiol 26:363–366

    PubMed  Google Scholar 

  30. 30.

    Shellock FG (2019) Guidelines for the management of patients with vascular access ports referred for MRI procedures

    Google Scholar 

  31. 31.

    Shellock FG, Morisoli SM (1994) Ex vivo evaluation of ferromagnetism, heating, and artifacts produced by heart valve prostheses exposed to a 1.5‑T MR system. J Magn Reson Imaging 4:756–758

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Walsh EG, Brott BC, Johnson VY, Venugopalan R, Anayiotos A (2008) Assessment of passive cardiovascular implant devices for MRI compatibility. Technol Health Care 16:233–245

    PubMed  Article  Google Scholar 

  33. 33.

    Shellock FG (2002) Biomedical implants and devices: assessment of magnetic field interactions with a 3.0-Tesla MR system. J Magn Reson Imaging 16:721–732

    PubMed  Article  Google Scholar 

  34. 34.

    Shellock FG (2001) Prosthetic heart valves and annuloplasty rings: assessment of magnetic field interactions, heating, and artifacts at 1.5 T. J Cardiovasc Magn Reson 3:317–324

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652

    PubMed  Article  Google Scholar 

  36. 36.

    Edwards MB, Ordidge RJ, Hand JW, Taylor KM, Young IR (2005) Assessment of magnetic field (4.7 T) induced forces on prosthetic heart valves and annuloplasty rings. J Magn Reson Imaging 22:311–317

    PubMed  Article  Google Scholar 

  37. 37.

    Edwards MB, Ordidge RJ, Thomas DL, Hand JW, Taylor KM (2002) Translational and rotational forces on heart valve prostheses subjected ex vivo to a 4.7‑T MR system. J Magn Reson Imaging 16:653–659

    PubMed  Article  Google Scholar 

  38. 38.

    Hassler M, Le Bas JF, Wolf JE, Contamin C, Waksmann B, Coulomb M (1986) Effects of the magnetic field in magnetic resonance imaging on 15 tested cardiac valve prostheses. J Radiol 67:661–666

    CAS  PubMed  Google Scholar 

  39. 39.

    Prasad SK, Pennell DJ (2004) Safety of cardiovascular magnetic resonance in patients with cardiovascular implants and devices. Heart 90:1241–1244

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Pruefer D, Kalden P, Schreiber W, Dahm M, Buerke M, Thelen M et al (2001) In vitro investigation of prosthetic heart valves in magnetic resonance imaging: evaluation of potential hazards. J Heart Valve Dis 10:410–414

    CAS  PubMed  Google Scholar 

  41. 41.

    Randall PA, Kohman LJ, Scalzetti EM, Szeverenyi NM, Panicek DM (1988) Magnetic resonance imaging of prosthetic cardiac valves in vitro and in vivo. Am J Cardiol 62:973–976

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Condon B, Hadley DM (2000) Potenzial MR hazard to patients with metallic heart valves: the Lenz effect. J Magn Reson Imaging 12:171–176

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Edwards MB, McLean J, Solomonidis S, Condon B, Gourlay T (2015) In vitro assessment of the Lenz effect on heart valve prostheses at 1.5 T. J Magn Reson Imaging 41:74–82

    PubMed  Article  Google Scholar 

  44. 44.

    Robertson NM, Diaz-Gomez M, Condon B (2000) Estimation of torque on mechanical heart valves due to magnetic resonance imaging including an estimation of the significance of the Lenz effect using a computational model. Phys Med Biol 45:3793–3807

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Shellock FG (2019) Guidelines for managing patients with heart valve prostheses and annuloplasty rings with unknown labeling information referred for MRI procedures

    Google Scholar 

  46. 46.

    Starck CT, Steffel J, Emmert MY, Plass A, Mahapatra S, Falk V et al (2012) Epicardial left atrial appendage clip occlusion also provides the electrical isolation of the left atrial appendage. Interact CardioVasc Thorac Surg 15:416–418

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    AtriCure (2021) Left atrial appendage management. https://www.atricure.com/atrial-occlusion. ​Zugegriffen: 30 Nov 2020

  48. 48.

    Nentwich K, Ene E, Halbfass P, Sonne K, Berkowitz A, Kerber S et al (2019) Verschluss des linken Herzohrs als therapeutische Alternative. Kardiologe 13:161–172

    Article  Google Scholar 

  49. 49.

    Reddy VY, Doshi SK, Kar S, Gibson DN, Price MJ, Huber K et al (2017) 5‑year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials. J Am Coll Cardiol 70:2964–2975

    PubMed  Article  Google Scholar 

  50. 50.

    Osmancik P, Tousek P, Herman D, Neuzil P, Hala P, Stasek J et al (2017) Interventional left atrial appendage closure vs novel anticoagulation agents in patients with atrial fibrillation indicated for long-term anticoagulation (PRAGUE-17 study). Am Heart J 183:108–114

    PubMed  Article  Google Scholar 

  51. 51.

    Boston Scientific (2021) Watchman. https://www.watchman.com. ​Zugegriffen: 30 Nov 2020

  52. 52.

    Informationen von Abbott Medical GmbH vom 9. Nov. 2020.

  53. 53.

    Ghanem A, Liebetrau C, Diener HC, Elsässer A, Grau A, Gröschel K et al (2018) Interventioneller PFO-Verschluss. Kardiologe 12:415–423

    Article  Google Scholar 

  54. 54.

    Shellock FG, Valencerina S (2005) Septal repair implants: evaluation of magnetic resonance imaging safety at 3 T. Magn Reson Imaging 23:1021–1025

    PubMed  Article  Google Scholar 

  55. 55.

    Shellock FG, Morisoli SM (1994) Ex vivo evaluation of ferromagnetism and artifacts of cardiac occluders exposed to a 1.5‑T MR system. J Magn Reson Imaging 4:213–215

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Shellock FG (2014) MRI bioeffects, safety, and patient management. Biomedical Research Publishing Group, Los Angeles

    Google Scholar 

  57. 57.

    Bock M, Mohrs OK, Voigtlaender T, Kauczor HU, Semmler W (2006) MRT Sicherheitsaspekte und Artefakte von Vorhofseptum-Okkludersystemen bei 1,5 T. Rofo 178:272–277

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Engstrom T, Labinaz M, de Silva R, Schwartz M, Meyten N, Uren NG et al (2015) Efficacy of a device to narrow the coronary sinus in refractory angina. N Engl J Med 372:519–527

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Wechsler AS, Sadowski J, Kapelak B, Bartus K, Kalinauskas G, Rucinskas K et al (2013) Durability of epicardial ventricular restoration without ventriculotomy. Eur J Cardiothorac Surg 44:189–192

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. med. Florian von Knobelsdorff.

Ethics declarations

Interessenkonflikt

F. von Knobelsdorff, W. R. Bauer, S. Busch, I. Eitel, C. Jensen, N. Marx, M. Neizel-Wittke, U. K. Radunski, A. Schuster und A. Rolf geben an, dass kein Interessenkonflikt besteht.

Additional information

Aus Gründen der besseren Lesbarkeit und Verständlichkeit der Texte wird in Springer-Publikationen in der Regel das generische Maskulinum als geschlechtsneutrale Form verwendet. Diese Form impliziert immer alle Geschlechter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

von Knobelsdorff, F., Bauer, W.R., Busch, S. et al. Sicherheit von nicht-aktiven kardiovaskulären Implantaten bei MRT-Untersuchungen – Update 2021. Kardiologe (2021). https://doi.org/10.1007/s12181-021-00474-9

Download citation

Schlüsselwörter

  • Magnetresonanztomographie
  • Sicherheit
  • Implantate
  • Kardiovaskulär

Keywords

  • Magnetic resonance imaging
  • Safety
  • Implants
  • Cardiovascular