Advertisement

Der Kardiologe

, Volume 10, Issue 3, pp 170–175 | Cite as

Körperliches Training in der Kardiologie – die Intensität ist entscheidend

  • M. HalleEmail author
  • R. Hambrecht
Übersicht

Zusammenfassung

Körperliches Training ist eine zentrale Therapiestrategie in Ergänzung zur Pharmakotherapie bei unterschiedlichen kardiovaskulären Risikofaktoren und Herz-Kreislauf-Erkrankungen. So können arterielle Hypertonie, Dyslipoproteinämie sowie Typ 2 Diabetes mellitus ebenso verbessert werden wie die koronare Herzerkrankung, Vorhofflimmern oder diastolische und systolische Herzinsuffizienz („heart failure with preserved or reduced ejection fraction“). Die Intensität körperlichen Trainings scheint entscheidend für den Erfolg der Intervention zu sein. Bei kardiovaskulären Risikofaktoren hat sich ein höher intensives Training als effektiver als ein moderates Training erwiesen. Bei kardialen Erkrankungen scheint aber ein moderates bis „supra“-moderates Training ohne hoch intensive Belastung die optimale Dosis zu sein. Aktuelle randomisierte Studien werden zeigen, inwieweit höhere Belastungen neben positiven pathophysiologischen Effekten auch die Rate der Morbidität und Mortalität reduzieren.

Schlüsselwörter

Hypertonie Herzinsuffizienz Risikofaktoren Herzerkrankungen Herz-Kreislauf-Erkrankungen 

Physical training in cardiology – the intensity is crucia

Abstract

Exercise training is a core treatment component in various cardiovascular risk factors and heart disease. Likewise, arterial hypertension, dyslipoproteinemia and type 2 diabetes, as well as cardiac diseases such as coronary heart disease, artrial fibrillation and heart failure with preserved as well as reduced ejection fraction, can be significantly improved. The intensity of exercise seems to play an essential component in achieving optimal beneficial effects. High intensities even of high-intensity exercise have proven to be superior to moderate or low intensity with respect to cardiovascular risk factors. In cardiac disease, supra-moderate intensities without high-intensity intervals seem to be the optimal dose of exercise. Current ongoing studies will show which exercise intensity yields the best pathophysiological adaptation, thereby potentally reducing morbidity and even mortality.

Keywords

Hypertension Heart failure Risk factors Heart diseases Cardiovascular diseases 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Halle und R. Hambrecht geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Vanhees L, Rauch B, Piepoli M, Buuren F van, Takken T, Borjesson M, Bjarnason-Wehrens B, Doherty P, Dugmore D, Halle M, Writing (2012) Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (Part III. Eur J Prev Cardiol 19:1333–1356CrossRefPubMedGoogle Scholar
  2. 2.
    Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM (2011) Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 124:789–795CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, Chan HT, Tsao CK, Tsai SP, Wu X (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378:1244–1253CrossRefPubMedGoogle Scholar
  4. 4.
    Schnohr P, Marott JL, Jensen JS, Jensen GB (2012) Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: the Copenhagen City Heart Study. Eur J Prev Cardiol 19:73–80CrossRefPubMedGoogle Scholar
  5. 5.
    Lee IM, Hsieh CC, Paffenbarger RS Jr. (1995) Exercise intensity and longevity in men. the harvard alumni health study. JAMA 273:1179–1184CrossRefPubMedGoogle Scholar
  6. 6.
    Lee IM, Sesso HD, Oguma Y, Paffenbarger RS Jr. (2003) Relative intensity of physical activity and risk of coronary heart disease. Circulation 107:1110–1116CrossRefPubMedGoogle Scholar
  7. 7.
    Sui X, LaMonte MJ, Laditka JN, Hardin JW, Chase N, Hooker SP, Blair SN (2007) Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA 298:2507–2516CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ (2001) Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286:1218–1227CrossRefPubMedGoogle Scholar
  9. 9.
    Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, Gross JL, Ribeiro JP, Schaan BD (2011) Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 305:1790–1799CrossRefPubMedGoogle Scholar
  10. 10.
    Karstoft K, Winding K, Knudsen SH, Nielsen JS, Thomsen C, Pedersen BK, Solomon TP (2013) The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 36:228–236CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stanford KI, Goodyear LJ (2014) Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ 38:308–314CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, Bales CW, Henes S, Samsa GP, Otvos JD, Kulkarni KR, Slentz CA (2002) Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 347:1483–1492CrossRefPubMedGoogle Scholar
  13. 13.
    Fletcher B, Berra K, Ades P, Braun LT, Burke LE, Durstine JL, Fair JM, Fletcher GF, Goff D, Hayman LL, Hiatt WR, Miller NH, Krauss R, Kris-Etherton P, Stone N, Wilterdink J, Winston M (2005) Managing abnormal blood lipids: a collaborative approach. Circulation 112:3184–3209CrossRefPubMedGoogle Scholar
  14. 14.
    Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2:e004473CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fagard RH, Cornelissen VA (2007) Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil 14:12–17CrossRefPubMedGoogle Scholar
  16. 16.
    Notarius CF, Millar PJ, Floras JS (2015) Muscle sympathetic activity in resting and exercising humans with and without heart failure. Appl Physiol Nutr Metab 40:1107–1115CrossRefPubMedGoogle Scholar
  17. 17.
    Cornelissen VA, Arnout J, Holvoet P, Fagard RH (2009) Influence of exercise at lower and higher intensity on blood pressure and cardiovascular risk factors at older age. J Hypertens 27:753–762CrossRefPubMedGoogle Scholar
  18. 18.
    Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS (2016) Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. J Am Coll Cardiol 67:1–12CrossRefPubMedGoogle Scholar
  19. 19.
    Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation 122:1221–1238CrossRefPubMedGoogle Scholar
  20. 20.
    Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342:454–460CrossRefPubMedGoogle Scholar
  21. 21.
    Laufs UWS, Czech T, Münzel T, Eisenhauer M, Böhm M, Nickenig G (2005) Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol 25:16CrossRefGoogle Scholar
  22. 22.
    Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, Albus C, Benlian P, Boysen G, Cifkova R, Deaton C, Ebrahim S, Fisher M, Germano G, Hobbs R, Hoes A, Karadeniz S, Mezzani A, Prescott E, Ryden L, Scherer M, Syvanne M, Scholte OP, Reimer WJ, Vrints C, Wood D, Zamorano JL, Zannad F (2012) European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 33:1635–1701CrossRefPubMedGoogle Scholar
  23. 23.
    Eijsvogels TM, Molossi S, Lee DC, Emery MS, Thompson PD (2016) Exercise at the extremes: the amount of exercise to reduce cardiovascular events. J Am Coll Cardiol 67:316–329CrossRefPubMedGoogle Scholar
  24. 24.
    Moholdt T, Wisloff U, Nilsen TI, Slordahl SA (2008) Physical activity and mortality in men and women with coronary heart disease: a prospective population-based cohort study in Norway (the HUNT study). Eur J Cardiovasc Prev Rehabil 15:639–645CrossRefPubMedGoogle Scholar
  25. 25.
    Ismail H, McFarlane JR, Nojoumian AH, Dieberg G, Smart NA (2013) Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure: a systematic review and meta-analysis. JACC Heart Fail 1:514–522CrossRefPubMedGoogle Scholar
  26. 26.
    Seferovic PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36:1718–27, 1727a–1727cCrossRefPubMedGoogle Scholar
  27. 27.
    Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32:670–679CrossRefPubMedGoogle Scholar
  28. 28.
    Edelmann F, Gelbrich G, Dungen HD, Frohling S, Wachter R, Stahrenberg R, Binder L, Topper A, Lashki DJ, Schwarz S, Herrmann-Lingen C, Loffler M, Hasenfuss G, Halle M, Pieske B (2011) Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the ex-DHF (exercise training in diastolic heart failure) pilot study. J Am Coll Cardiol 58:1780–1791CrossRefPubMedGoogle Scholar
  29. 29.
    Kraigher-Krainer E, Lyass A, Massaro JM, Lee DS, Ho JE, Levy D, Kannel WB, Vasan RS (2013) Association of physical activity and heart failure with preserved vs. reduced ejection fraction in the elderly: the Framingham heart study. Eur J Heart Fail 15:742–746CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Qureshi WT, Alirhayim Z, Blaha MJ, Juraschek SP, Keteyian SJ, Brawner CA, Al-Mallah MH (2015) Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the henry ford exercise testing (FIT) project. Circulation 131:1827–1834CrossRefPubMedGoogle Scholar
  31. 31.
    Pathak RK, Elliott A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Hendriks JM, Twomey D, Kalman JM, Abhayaratna WP, Lau DH, Sanders P (2015) Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J Am Coll Cardiol 66:985–996CrossRefPubMedGoogle Scholar
  32. 32.
    Taylor RS, Sagar VA, Davies EJ, Briscoe S, Coats AJ, Dalal H, Lough F, Rees K, Singh S (2014) Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev 4:Cd003331PubMedGoogle Scholar
  33. 33.
    Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094CrossRefPubMedGoogle Scholar
  34. 34.
    Stoylen A, Conraads V, Halle M, Linke A, Prescott E, Ellingsen O (2012) Controlled study of myocardial recovery after interval training in heart failure: SMARTEX-HF – rationale and design. Eur J Prev Cardiol 19:813–821CrossRefPubMedGoogle Scholar
  35. 35.
    Rognmo O, Moholdt T, Bakken H, Hole T, Molstad P, Myhr NE, Grimsmo J, Wisloff U (2012) Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 126:1436–1440CrossRefPubMedGoogle Scholar
  36. 36.
    Gal BT, Piepoli MF, Corra U, Conraads V, Adamopoulos S, Agostoni P, Piotrowicz E, Schmid JP, Seferovic PM, Ponikowski P, Filippatos G, Jaarsma T (2015) Exercise programs for LVAD supported patients: A snapshot from the ESC affiliated countries. Int J Cardiol 201:215–219CrossRefPubMedGoogle Scholar
  37. 37.
    Compostella L, Russo N, Setzu T, Bottio T, Compostella C, Tarzia V, Livi U, Gerosa G, Iliceto S, Bellotto F (2015) A practical review for cardiac rehabilitation professionals of continuous-flow left ventricular assist devices: historical and current perspectives. J Cardiopulm Rehabil Prev 35:301–311CrossRefPubMedGoogle Scholar
  38. 38.
    Jung MH, Gustafsson F (2015) Exercise in heart failure patients supported with a left ventricular assist device. J Heart Lung Transplant 34:489–496CrossRefPubMedGoogle Scholar
  39. 39.
    Christle JW, Boscheri A, Pressler A, Grinninger C, Schramm R, Hagl CM, Halle M (2015) Interval exercise training increases maximal and submaximal exercise performance in heart failure with biventricular assist device therapy. Int J Cardiol 187:104–105CrossRefPubMedGoogle Scholar
  40. 40.
    Mohlenkamp S, Lehmann N, Breuckmann F, Brocker-Preuss M, Nassenstein K, Halle M, Budde T, Mann K, Barkhausen J, Heusch G, Jockel KH, Erbel R (2008) Marathon study I and Heinz Nixdorf recall study I. running: the risk of coronary events : prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J 29:1903–1910CrossRefPubMedGoogle Scholar
  41. 41.
    Mohlenkamp S, Halle M (2015) Myocardial adaptation in response to marathon training: do short-term benefits translate into long-term prognosis? Circ Cardiovasc Imaging 8:e003030CrossRefPubMedGoogle Scholar
  42. 42.
    Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB (2015) Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol 65:411–419CrossRefPubMedGoogle Scholar
  43. 43.
    La Gerche A, Heidbuchel H (2014) Can intensive exercise harm the heart? You can get too much of a good thing. Circulation 130:992–1002CrossRefPubMedGoogle Scholar
  44. 44.
    Halle M (2013) Letter by Halle regarding article, “Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients”. Circulation 127:e637CrossRefPubMedGoogle Scholar
  45. 45.
    Mons UHH, Brenner H (2014) A reverse J‑shaped association of leisure time physical activity with prognosis in patients with stable coronary heart disease: evidence from a large cohort with repeated measurements. Heart 100:1043–1049CrossRefPubMedGoogle Scholar
  46. 46.
    Cruz FM, Sanz-Rosa D, Roche-Molina M, Garcia-Prieto J, Garcia-Ruiz JM, Pizarro G, Jimenez-Borreguero LJ, Torres M, Bernad A, Ruiz-Cabello J, Fuster V, Ibanez B, Bernal JA (2015) Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J Am Coll Cardiol 65:1438–1450CrossRefPubMedGoogle Scholar
  47. 47.
    Suchy C, Massen L, Rognmo O, Van Craenenbroeck EM, Beckers P, Kraigher-Krainer E, Linke A, Adams V, Wisloff U, Pieske B, Halle M (2014) Optimising exercise training in prevention and treatment of diastolic heart failure (OptimEx-CLIN): rationale and design of a prospective, randomised, controlled trial. Eur J Prev Cardiol 21:18–25CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Zentrum für Prävention und Sportmedizin, Klinikum rechts der IsarTechnische Universität MünchenMünchenDeutschland
  2. 2.Deutsches Zentrum für Herzkreislauferkrankungen (DZHK)Munich Heart AllianceMünchenDeutschland
  3. 3.Else Kröner-Fresenius PräventionszentrumKlinikum rechts der IsarMünchenDeutschland
  4. 4.Kardiologie und AngiologieKlinikum Links der WeserBremenDeutschland
  5. 5.Bremer Institut für Herz- und Kreislaufforschung (BIHKF)Klinikum Links der WeserBremenDeutschland

Personalised recommendations