Skip to main content
Log in

Fraktionelle Flussreserve in der Diagnostik der koronaren Herzerkrankung

Klinische Bedeutung, Durchführung und Interpretation

Fractional flow reserve in the diagnostics of coronary artery disease

Clinical importance, performance and interpretation

  • Übersichten
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Die invasive Bestimmung der fraktionellen Flussreserve („fractional flow reserve“, FFR) gestattet die Ermittlung der hämodynamischen Relevanz von Stenosen der Koronararterien. Verschiedene Studien konnten nachweisen, dass die Indikationsstellung zur myokardialen Revaskularisation, basierend auf den Ergebnissen einer FFR-Messung, mit einem verbesserten Outcome verbunden ist im Vergleich zur rein visuellen Quantifizierung des Schweregrades einer Stenose. Dies hat dazu geführt, dass die FFR-Messung Eingang in die Leitlinien gefunden hat. Die vorliegende Arbeit zeigt den theoretischen Hintergrund der FFR-Messung auf, fasst die entscheidenden klinischen Daten zusammen und bietet eine umfassende Praxisanleitung für die sichere und schnelle Durchführung der Messung im klinischen Alltag.

Abstract

Invasive measurement of the fractional flow reserve (FFR) allows determination of the hemodynamic relevance of a given coronary artery stenosis. Several clinical trials could demonstrate the superiority of FFR-based decision-making for or against percutaneous coronary intervention (PCI) in comparison to visual quantification of the severity of a stenosis. These results led to measurement of the FFR being included in the current guideline recommendations on myocardial revascularization. This article elaborates the theoretical background of measurement of the FFR, summarizes the decisive clinical data and provides comprehensive practical instructions for the safe and rapid measurement of FFR in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Pijls NH, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708

    Article  CAS  PubMed  Google Scholar 

  2. Windecker S, Kolh P, Alfonso F et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619

    Google Scholar 

  3. Van Belle E, Rioufol G, Pouillot C et al (2014) Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography: insights from a large French multicenter fractional flow reserve registry. Circulation 129(2):173–185

    Article  PubMed  Google Scholar 

  4. Lachance P, Déry JP, Rodés-Cabau J et al (2008) Impact of fractional flow reserve measurement on the clinical management of patients with coronary artery disease evaluated with noninvasive stress tests prior to cardiac catheterization. Cardiovasc Revasc Med 9(4):229–234

    Article  PubMed  Google Scholar 

  5. Toth GG, Toth B, Johnson NP et al (2014) Revascularization decisions in patients with stable angina and intermediate lesions: results of the international survey on interventional strategy. Circ Cardiovasc Interv 7(6):751–759

    Article  PubMed  Google Scholar 

  6. AQUA-Institut (2014) AQUA-Qualitätssicherung 2008 und 2013. In: Deutsche Herzstiftung (Hrsg) Deutscher Herzbericht 2014. Deutsche Herzstiftung, Frankfurt am Main, S 63

    Google Scholar 

  7. De Bruyne B, Pijls NH, Kalesan B et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001

    Article  PubMed  Google Scholar 

  8. Bech GJW, De Bruyne B, Pijls NHJ et al (2001) Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103(24):2928–2934

    Article  CAS  PubMed  Google Scholar 

  9. Pijls NHJ, van Schaardenburgh P, Manoharan G et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5‑year follow-up of the DEFER study. J Am Coll Cardiol 49(21):2105–2111

    Article  PubMed  Google Scholar 

  10. Pijls NHJ (2015) 15-year follow-up of the DEFER trial Presented at: EuroPCR; May 19, 2015; Paris, France

    Google Scholar 

  11. Tonino PAL, de Bruyne B, Pijls NHJ et al (2009) Fractional flow reserve versus angiography for guiding Percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  CAS  PubMed  Google Scholar 

  12. Pijls NHJ, Fearon WF, Tonino PAL et al (2010) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease : 2‑year follow-up of the FaME (fractional flow reserve versus Angiography for Multivessel evaluation) study. J Am Coll Cardiol 56(3):177–184

    Article  PubMed  Google Scholar 

  13. van Nunen LX, Zimmermann FM, Tonino PA et al (2015) Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5‑year follow-up of a randomised controlled trial. Lancet doi:10.1016/S0140-6736(15)00057-4

    Google Scholar 

  14. De Bruyne D, Fearon WF, Pijls NHJ et al (2014) Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med 371(13):1208–1217

    Article  PubMed  Google Scholar 

  15. Zhang D, Lv S, Xiantao SX et al (2015) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention: a meta-analysis. Heart 101(6):455–462

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johnson NP, Tóth GG, Lai D et al (2014) Prognostic value of fractional flow reserve : linking physiologic severity to clinical outcomes. J Am Coll Cardiol 64(16):1641–1654

    Article  PubMed  Google Scholar 

  17. Adjedj J, De Bruyne B, Floré V et al (2016) Significance of intermediate values of fractional flow reserve in patients with coronary artery disease. Circulation 133(5):502–508

    Article  CAS  PubMed  Google Scholar 

  18. Ozdemir M, Yazici GE, Turkoglu S et al (2007) Metoprolol does not effect myocardial fractional flow reserve in patients with intermediate coronary stenoses. Int Heart J 48(4):477–483

    Article  CAS  PubMed  Google Scholar 

  19. Aqel RA, Zoghbi GJ, Trimm JR et al (2004) Effect of caffeine administered intravenously on intracoronary-administered adenosine-induced coronary hemodynamics in patients with coronary artery disease. Am J Cardiol 93(3):343–346

    Article  CAS  PubMed  Google Scholar 

  20. Hage FG, Iskandrian AE (2012) The effect of caffeine on adenosine myocardial perfusion imaging: time to reassess? J Nucl Cardiol 19(3):415–419

    Article  PubMed  Google Scholar 

  21. Salcedo J, Kern MJ (2009) Effects of caffeine and theophylline on coronary hyperemia induced by adenosine or dipyridamole. Catheter Cardiovasc Interv 74(4):598–605

    Article  PubMed  Google Scholar 

  22. Lindstaedt M, Bojara W, Holland-Letz T et al (2009) Adenosine-induced maximal coronary hyperemia for myocardial fractional flow reserve measurements: comparison of administration by femoral venous versus antecubital venous access. Clin Res Cardiol 98(11):717–723

    Article  CAS  PubMed  Google Scholar 

  23. Prasad A, Zareh M, Doherty R et al (2014) Use of regadenoson for measurement of fractional flow reserve. Catheter Cardiovasc Interv 83(3):369–374

    Article  PubMed  Google Scholar 

  24. Hakeem A, Uretsky B (2014) Regadenoson for FFR: time to say good-bye to adenosine? Catheter Cardiovasc Interv 83(3):375–376

    Article  PubMed  Google Scholar 

  25. Thomas GS, Tammelin BR, Schiffman GL et al (2008) Safety of regadenoson, a selective adenosine A2A agonist, in patients with chronic obstructive pulmonary disease: A randomized, double-blind, placebo-controlled trial (RegCOPD trial). J Nucl Cardiol 15(3):319–328

    Article  Google Scholar 

  26. Al Jaroudi W, Iskandrian AE (2009) Regadenoson: a new myocardial stress agent. J Am Coll Cardiol 54(13):1123–1130

    Article  CAS  PubMed  Google Scholar 

  27. Casella G, Leibig M, Schiele TM et al (2004) Are high doses of intracoronary adenosine an alternative to standard intravenous adenosine for the assessment of fractional flow reserve? Am Heart J 148(4):590–595

    Article  CAS  PubMed  Google Scholar 

  28. Murtagh B, Higano S, Lennon R et al (2003) Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. Am Heart J 146(1):99–105

    Article  CAS  PubMed  Google Scholar 

  29. De Luca G, Venegoni L, Iorio S et al (2011) Effects of increasing doses of intracoronary adenosine on the assessment of fractional flow reserve. JACC Cardiovasc Interv 4(10):1079–1084

    Article  PubMed  Google Scholar 

  30. Schlundt C, Bietau C, Klinghammer L et al (2015) Comparison of intracoronary versus intravenous administration of adenosine for measurement of coronary fractional flow reserve. Circ Cardiovasc Interv 8(5):e001781 doi:10.1161/CIRCINTERVENTIONS.114.001781

    Article  PubMed  Google Scholar 

  31. Wilson RF, White CW (1986) Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 73(3):444–451

    Article  CAS  PubMed  Google Scholar 

  32. Wilson RF, White CW (1988) Serious ventricular dysrhythmias after intracoronary papaverine. Am J Cardiol 62(17):1301–1302

    Article  CAS  PubMed  Google Scholar 

  33. Lim MJ, Kern MJ (2005) Utility of coronary physiologic hemodynamics for bifurcation, aorto-ostial, and ostial branch stenoses to guide treatment decisions. Catheter Cardiovasc Interv 65(4):461–468

    Article  PubMed  Google Scholar 

  34. Jokhi P, Curzen N (2009) Percutaneous coronary intervention of ostial lesions. EuroIntervention 5(4):511–514

    Article  PubMed  Google Scholar 

  35. Hamilos M, Muller O, Cuisset T et al (2009) Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation 120(15):1505–1512

    Article  PubMed  Google Scholar 

  36. Daniels DV, van’t Veer M, Pijls NHJ et al (2012) The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease. JACC Cardiovasc Interv 5(10):1021–1025

    Article  PubMed  Google Scholar 

  37. Mallidi J, Atreya AR, Cook J et al (2015) Long-term outcomes following fractional flow reserve-guided treatment of angiographically ambiguous left main coronary artery disease: a meta-analysis of prospective cohort studies. Catheter Cardiovasc Interv 86(1):12–18

    Article  PubMed  Google Scholar 

  38. Fearon W, Yong A (2015) The impact of downstream coronary stenosis on fractional flow reserve assessment of intermediate left main coronary artery disease: human validation. J Am Coll Cardiol Intv 8(3):398–403

    Article  Google Scholar 

  39. Park SJ, Ahn JM, Pijls NH et al (2012) Validation of functional state of coronary tandem lesions using computational flow dynamics. Am J Cardiol 110(11):1578–1584

    Article  PubMed  Google Scholar 

  40. Kim HL, Koo BK, Nam CW et al (2012) Clinical and physiological outcomes of fractional flow reserve-guided percutaneous coronary intervention in patients with serial stenoses within one coronary artery. JACC Cardiovasc Interv 5(10):1013–1018

    Article  PubMed  Google Scholar 

  41. De Bruyne B, Pijls NH, Heyndrickx GR et al (2000) Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation 101(15):1840–1847

    Article  PubMed  Google Scholar 

  42. Pijls NH, De Bruyne B, Bech GJ et al (2000) Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation 102(19):2371–2377

    Article  CAS  PubMed  Google Scholar 

  43. Iguchi T, Hasegawa T, Nishimura S et al (2013) Impact of lesion length on functional significance in intermediate coronary lesions. Clin Cardiol 36(3):172–177

    Article  PubMed  Google Scholar 

  44. López-Palop R, Carrillo P, Cordero A et al (2013) Effect of lesion length on functional significance of intermediate long coronary lesions. Catheter Cardiovasc Interv 81(4):E186–94

    Article  PubMed  Google Scholar 

  45. Cuculi F, De Maria GL, Meier P et al (2014) Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol 64(18):1894–1904

    Article  PubMed  Google Scholar 

  46. Cuculi F, Dall’Armellina E, Manlhiot C et al (2014) Early change in invasive measures of microvascular function can predict myocardial recovery following PCI for ST-elevation myocardial infarction. Eur Heart J 35(29):1971–1980

    Article  CAS  PubMed  Google Scholar 

  47. Layland J, Carrick D, McEntegart M et al (2013) Vasodilatory capacity of the coronary microcirculation is preserved in selected patients with non-ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv 6(3):231–236

    Article  PubMed  Google Scholar 

  48. Ntalianis A, Sels JW, Davidavicius G et al (2010) Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv 3(12):1274–1281

    Article  PubMed  Google Scholar 

  49. Layland J, Rauhalammi S, Watkins S et al (2015) Assessment of fractional flow reserve in patients with recent non-ST-segment-elevation myocardial infarction: comparative study with 3‑T stress perfusion cardiac magnetic resonance imaging. Circ Cardiovasc Interv 8(8):e002207 doi:10.1161/CIRCINTERVENTIONS.114.002207

    Article  PubMed  Google Scholar 

  50. Leesar MA, Abdul-Baki T, Akkus NI et al (2003) Use of fractional flow reserve versus stress perfusion scintigraphy after unstable angina. Effect on duration of hospitalization, cost, procedural characteristics, and clinical outcome. J Am Coll Cardiol 41(7):1115–1121

    Article  PubMed  Google Scholar 

  51. Sels JW, Tonino PA, Siebert U et al (2011) Fractional flow reserve in unstable angina and non-ST-segment elevation myocardial infarction: experience from the FAME (Fractional flow reserve versus Angiography for Multivessel Evaluation) study. JACC Cardiovasc Interv 4(11):1183–1189

    Article  PubMed  Google Scholar 

  52. Layland J, Oldroyd KG, Curzen N et al (2015) Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J 36(2):100–111

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lopez-Palop R, Carrillo P, Torres F et al (2012) Results of fractional flow reserve measurement to evaluate nonculprit coronary artery stenoses in patients with acute coronary syndrome. Rev Esp Cardiol (Engl Ed) 65(2):164–170

    Article  Google Scholar 

  54. Lee AMS, Chen CH (2015) Myocardial bridging: an up-to-date review. J Invasive Cardiol 27(11):521

    PubMed  PubMed Central  Google Scholar 

  55. Singh IM, Subbarao RA, Sadanandan S (2008) Limitation of fractional flow reserve in evaluating coronary artery myocardial bridge. J Invasive Cardiol 2:E161

    Google Scholar 

  56. Gould KL, Johnson NP (2015) Myocardial Bridges: Lessons in Clinical Coronary Pathophysiology. JACC Cardiovasc Imaging 8:705–709

    Article  PubMed  Google Scholar 

  57. Pijls NH, Klauss V, Siebert U et al (2002) Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation 105(25):2950–2954

    Article  PubMed  Google Scholar 

  58. Rieber J, Schiele TM, Erdin P et al (2002) Fractional flow reserve predicts major adverse cardiac events after coronary stent implantation. Z Kardiol 3:132–136

    Article  Google Scholar 

  59. Hanekamp CEE, Koolen JJ, Pijls N et al (1999) Comparison of quantitative coronary angiography, intravascular ultrasound, and coronary pressure measurement to assess optimum stent deployment. Circulation 99(8):1015–1021

    Article  CAS  PubMed  Google Scholar 

  60. Chen S‑L, Ye F, Zhang J‑L et al (2015) Randomized comparison of FFR-guided and angiography-guided provisional Stenting of true coronary bifurcation lesions: the DKCRUSH-VI trial (double kissing crush versus provisional Stenting technique for treatment of coronary bifurcation lesions VI). JACC Cardiovasc Interv 8(4):536–546

    Article  PubMed  Google Scholar 

  61. Tu S, Echavarria-Pinto M, von Birgelen C et al (2015) Fractional flow reserve and coronary bifurcation anatomy : a novel quantitative model to assess and report the stenosis severity of bifurcation lesions. JACC Cardiovasc Interv 8(4):564–574

    Article  PubMed  Google Scholar 

  62. Koo BK, Park KW, Kang HJ et al (2008) Physiological evaluation of the provisional side-branch intervention strategy for bifurcation lesions using fractional flow reserve. Eur Heart J 29(6):726–732

    Article  PubMed  Google Scholar 

  63. Sen S, Escaned J, Malik IS et al (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59(15):1392–1402

    Article  CAS  PubMed  Google Scholar 

  64. Petraco R, Al-Lamee R, Gotberg M et al (2014) Real-time use of instantaneous wave-free ratio: results of the ADVISE in-practice: an international, multicenter evaluation of instantaneous wave-free ratio in clinical practice. Am Heart J 168(5):739–748

    Article  PubMed  PubMed Central  Google Scholar 

  65. Berry C, van ’t Veer M, Witt N et al (2013) VERIFY (VERification of instantaneous wave-free ratio and fractional flow reserve for the assessment of coronary artery stenosis severity in everyday practice): a multicenter study in consecutive patients. J Am Coll Cardiol 61(13):1421–1427

    Article  PubMed  Google Scholar 

  66. Jeremias A, Maehara A, Généreux P et al (2014) Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study. J Am Coll Cardiol 63(13):1253–1261

    Article  PubMed  Google Scholar 

  67. van de Hoef TP, Siebes M, Spaan JA et al (2015) Fundamentals in clinical coronary physiology: why coronary flow is more important than coronary pressure. Eur Heart J 36(47):3312–3319

    Article  PubMed  Google Scholar 

  68. McClish JC, Ragosta M, Powers ER et al (2004) Effect of acute myocardial infarction on the utility of fractional flow reserve for the physiologic assessment of the severity of coronary artery narrowing. Am J Cardiol 93(9):1102–1106

    Article  PubMed  Google Scholar 

  69. Pijls NH, Kern MJ, Yock PG et al (2000) Practice and potential pitfalls of coronary pressure measurement. Catheter Cardiovasc Interv 49(1):1–16

    Article  CAS  PubMed  Google Scholar 

  70. Claeys MJ, Bosmans JM, Hendrix J et al (2001) Reliability of fractional flow reserve measurements in patients with associated microvascular dysfunction: importance of flow on translesional pressure gradient. Catheter Cardiovasc Interv 54(4):427–434

    Article  CAS  PubMed  Google Scholar 

  71. Verdier-Watts F, Rioufol G, Mewton N et al (2015) Influence of arterial hypotension on fractional flow reserve measurements. EuroIntervention 11(4):416–420

    Article  PubMed  Google Scholar 

  72. Seto AH, Tehrani DM, Bharmal MI et al (2014) Variations of coronary hemodynamic responses to intravenous adenosine infusion: implications for fractional flow reserve measurements. Catheter Cardiovasc Interv 84(3):416–425

    Article  PubMed  Google Scholar 

  73. Min JK, Leipsic J, Pencina MJ et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308(12):1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997

    Article  PubMed  Google Scholar 

  75. Norgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63(12):1145–1155

    Article  Google Scholar 

  76. Gaur S, Bezerra HG, Lassen JF et al (2014) Fractional flow reserve derived from coronary CT angiography: variation of repeated analyses. J Cardiovasc Comput Tomogr 8(4):307–314

    Article  PubMed  Google Scholar 

  77. Morris PD, van de Vosse FN, Lawford PV et al (2015) “Virtual” (Computed) Fractional Flow Reserve: Current Challenges and Limitations. JACC Cardiovasc Interv 8(8):1009–1017

    Article  PubMed  PubMed Central  Google Scholar 

  78. Morris PD, Ryan D, Morton AC et al (2013) Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc Interv 6(2):149–157

    Article  PubMed  Google Scholar 

  79. Papafaklis MI, Muramatsu T, Ishibashi Y et al (2014) Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire – fractional flow reserve. EuroIntervention 10(5):574–583

    Article  PubMed  Google Scholar 

  80. Tu S, Barbato E, Köszegi Z et al (2014) Fractional flow reserve calculation from 3‑dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv 7(7):768–777

    Article  PubMed  Google Scholar 

  81. Tröbs M, Achenbach S, Röther J et al (2016) Comparison of fractional flow reserve based on computational fluid dynamics modeling using coronary angiographic vessel morphology versus Invasively measured fractional flow reserve. Am J Cardiol 117(1):29–35

    Article  PubMed  Google Scholar 

  82. Zafar H, Sharif F, Leahy MJ (2014) Feasibility of intracoronary frequency domain optical coherence tomography derived fractional flow reserve for the assessment of coronary artery stenosis. Int Heart J 55(4):307–311

    Article  PubMed  Google Scholar 

  83. Zafar H, Ullah I, Dinneen K et al (2014) Evaluation of hemodynamically severe coronary stenosis as determined by fractional flow reserve with frequency domain optical coherence tomography measured anatomical parameters. J Cardiol 64(1):19–24

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Möllmann.

Ethics declarations

Interessenkonflikt

H. Möllmann: Referentenhonorar und Proctortätigkeit St. Jude Medical. J. Rieber: Referentenhonorar St. Jude Medical, Volcano Corp. G. Richardt: Referentenhonorar St. Jude Medical. T. Schmitz: Proctortätigkeit St. Jude Medical. S. Achenbach: Forschungsunterstützung (an die Institution) Siemens Healthcare, Abbott Vascular. T. Rudolph, H. Eggebrecht und N. Werner und geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möllmann, H., Rudolph, T., Rieber, J. et al. Fraktionelle Flussreserve in der Diagnostik der koronaren Herzerkrankung. Kardiologe 10, 88–105 (2016). https://doi.org/10.1007/s12181-016-0049-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-016-0049-5

Schlüsselwörte

Keywords

Navigation