Skip to main content
Log in

Intravaskuläre Bildgebung bei akutem Koronarsyndrom

Intravaskulärer Ultraschall und optische Kohärenztomographie

Intravascular imaging in acute coronary syndrome

Intravascular ultrasound and optical coherence tomography

  • Interventionelle Kardiologie
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Das akute Koronarsyndrom (ACS) wird entweder durch eine signifikante Verengung oder einen vollständigen Verschluss einer Koronararterie verursacht. Post-mortem-Studien konnten zeigen, dass kritische Stenosen bzw. der Verschluss einer Arterie bei Patienten mit ACS, die angiographische „culprit lesion“ (CL), vor allem aus frischem Thrombusmaterial bestehen; die Plaque-Ruptur – die eigentliche Ursache des Thrombenmaterials (wahre CL, „culprit of the CL“) – ist proximal oder distal der Läsion zu finden. Die Koronarangiographie reicht demzufolge als diagnostisches Werkzeug zur sicheren Identifikation und Untersuchung der wahren CL (Länge, Thrombusanteil, Durchmesser, Lokalisierung der Plaque-Ruptur, Identifikation von vulnerablen Plaque) nicht mehr aus. Der intravaskuläre Ultraschall (IVUS) erlaubt es einem interventionellen Kardiologen, die Gefäßwand und den atherosklerotischen Prozess in vivo zu sehen. Intravaskulärer „Virtual-histology“-Ultraschall stellt 4 Farben dar: hellgrün („fibrofatty tissue“), dunkelgrün („fibrotic tissue“), weiß („calcified tissue“) und rot („necrotic core“). Die optische Kohärenztomographie ist eine neue Art der intravaskulären Bildgebung; sie erlaubt, ähnlich wie der IVUS, jedoch präziser die In-vivo-Vermessung der Koronararterien (Durchmesser, Länge etc.) und die Bestimmung der CL (Thrombuslast, Plaque-Ruptur, Länge) sowie die Optimierung nach primärer perkutaner Koronarintervention (PPCI).

Abstract

Acute coronary syndrome (ACS) is caused by severe narrowing or total occlusion of the infarct-related artery (IRA). Post-mortem studies have shown that with angiography severe narrowing and occlusion (angiographic culprit lesion) in patients with ACS are mainly composed of fresh thrombi whereas the plaque rupture site, the actual culprit of the culprit lesion, which caused the ACS, can be located proximal or distal to the angiographic culprit lesion. Therefore, angiography is not sufficient for an accurate assessment of the true culprit lesion (e. g. length, thrombus burden, diameter, plaque rupture site and vulnerable plaques). Intravascular ultrasound (IVUS) allows the operator to study and assess the vessel wall in vivo. Virtual histology allows different types of tissue to be identified within the atherosclerotic plaque by means of four colors: light green (fibrofatty tissue), dark green (fibrotic tissue), white (calcified tissue) and red (necrotic tissue). Optical coherence tomography is a new imaging modality which allows the most accurate investigation of the coronary arteries (diameter and length) in vivo and the culprit lesions (thrombus burden, plaque rupture, length and vulnerable plaques) as well as optimization after primary percutaneous coronary interventions (PPCI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Virmani R, Burke A, Farb A et al (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:13–18

    Article  Google Scholar 

  2. Schaar JA, Muller JE, Falk E et al (2004) Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J 25:1077–1082

    Article  PubMed  Google Scholar 

  3. Nakano M, Yahagi K, Otsuka F et al (2014) Causes of early stent thrombosis in patients presenting with acute coronary syndrome: an ex vivo human autopsy study. J Am Coll Cardiol 63:2510–2520

    Article  PubMed  Google Scholar 

  4. Kawamori H, Shite J, Shinke T et al (2013) Natural consequence of post-intervention stent malapposition, thrombus, tissue prolapse, and dissection assessed by optical coherence tomography at mid-term follow-up. Eur Heart J Cardiovasc Imaging 14:865–875

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mintz GS, Nissen SE, Anderson WD et al (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37:1478–1492

    Article  CAS  PubMed  Google Scholar 

  6. García-García HM, Mintz GS, Lerman A et al (2009) Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention 5:177–189

    Article  PubMed  Google Scholar 

  7. Levine GN, Bates ER, Blankenship JC et al (2011) ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol 58:44–122

    Article  Google Scholar 

  8. Sianos G, Papafaklis MI, Daemen J et al (2007) Angiographic stent thrombosis after routine use of drug-eluting stents in ST-segment elevation myocardial infarction: the importance of thrombus burden. J Am Coll Cardiol 50:573–583

    Article  CAS  PubMed  Google Scholar 

  9. Onuma Y, Thuesen L, Geuns RJ van et al (2013) Randomized study to assess the effect of thrombus aspiration on flow area in patients with ST-elevation myocardial infarction: an optical frequency domain imaging study – TROFI trial. Eur Heart J 34:1050–1060

    Article  CAS  PubMed  Google Scholar 

  10. Svilaas T, Vlaar PJ, Horst IC van der et al (2008) Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med 358:557–567

    Article  CAS  PubMed  Google Scholar 

  11. Stone GW, Abizaid A, Silber S et al (2012) Prospective, randomized, multicenter evaluation of a polyethylene terephthalate micronet mesh-covered stent (MGuard) in ST-segment elevation myocardial infarction: the MASTER trial. J Am Coll Cardiol 60:1975–1984

    Article  Google Scholar 

  12. Kubo T, Imanishi T, Takarada S et al (2007) Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 50:933–939

    Article  PubMed  Google Scholar 

  13. Costa MA, Angiolillo DJ, Tannenbaum M et al (2008) Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol 101:1704–1711

    Article  CAS  PubMed  Google Scholar 

  14. Legutko J, Jakala J, Mintz GS et al (2013) Radiofrequency-intravascular ultrasound assessment of lesion coverage after angiography-guided emergent percutaneous coronary intervention in patients with non-ST elevation myocardial infarction. Am J Cardiol 112:1854–1859

    Article  PubMed  Google Scholar 

  15. Legutko J, Jakala J, Mintz GS et al (2012) Virtual histology-intravascular ultrasound assessment of lesion coverage after angiographically-guided stent implantation in patients with ST Elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol 109:1405–1410

    Article  PubMed  Google Scholar 

  16. Tanaka A, Imanishi T, Kitabata H et al (2009) Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J 30:1348–1355

    Article  PubMed  Google Scholar 

  17. Imola F, Occhipinti M, Biondi-Zoccai G et al (2013) Association between proximal stent edge positioning on atherosclerotic plaques containing lipid pools and postprocedural myocardial infarction (from the CLI-POOL Study). Am J Cardiol 111:526–531

    Article  PubMed  Google Scholar 

  18. Werkum JW van, Heestermans AA, Zomer AC et al (2009) Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis Registry. J Am Coll Cardiol 53:1399–1409

    Article  PubMed  Google Scholar 

  19. Casella G, Klauss V, Ottani F et al (2003) Impact of intravascular ultrasound-guided stenting on long-term clinical outcome: a meta-analysis of available studies comparing intravascular ultrasound-guided and angiographically guided stenting. Catheter Cardiovasc Interv 59:314–321

    Article  PubMed  Google Scholar 

  20. Roy P, Steinberg DH, Sushinsky SJ et al (2008) The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur Heart J 29:1851–1857

    Article  CAS  PubMed  Google Scholar 

  21. Park SJ, Kim YH, Park DW et al (2009) Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv 2:167–177

    Article  PubMed  Google Scholar 

  22. Prati F, Di Vito L, Biondi-Zoccai G et al (2012) Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8:823–829

    Article  PubMed  Google Scholar 

  23. Farb A, Sangiorgi G, Carter AJ et al (1999) Pathology of acute and chronic coronary stenting in humans. Circulation 99:44–52

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. B. Mrevlje, J. Legutko, F. Tillwich, J. Jakala, D. Dudek, M. Noč, L. Rzeszutko, P. Kleczynski, R. Birkemeyer, M. Aboukoura und C.A. Nienaber geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mrevlje.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrevlje, B., Legutko, J., Tillwich, F. et al. Intravaskuläre Bildgebung bei akutem Koronarsyndrom. Kardiologe 9, 47–53 (2015). https://doi.org/10.1007/s12181-014-0644-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-014-0644-2

Schlüsselwörter

Keywords

Navigation