Skip to main content
Log in

Klinischer Nutzen einer Kardio-MRT-Untersuchung bei Patienten mit akutem Myokardinfarkt

Clinical benefits of cardiac MRI investigations in patients with acute myocardial infarction

  • Übersichten
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Nach der neuen, überarbeiteten Definition des akuten Myokardinfarktes sind neben der Bestimmung der kardialen Biomarker die klinische Symptomatik, EKG-Veränderungen sowie die Anwendung eines bildgebenden Verfahrens wichtig. Im Folgenden wird anhand der kardialen Magnetresonanztomographie (MRT) beschrieben, inwieweit ein Verlust von vitalem Myokard, neu aufgetretene Wandbewegungsstörungen in Ruhe oder der Nachweis einer Ischämie bzw. Differenzialdiagnosen, wie z. B. eine Myokarditis, untersucht werden können.

Abstract

The recently published third universal amended definition of myocardial infarction describes the necessity of biomarkers for the diagnosis of acute myocardial infarction. Clinical symptoms, new electrocardiogram (ECG) changes as well as cardiac imaging are other important factors. This review discusses how cardiac magnetic resonance imaging (MRI) can be used to detect and quantify viable myocardium, new onset wall motion abnormalities at rest and the detection of ischemia. In addition, the diagnostic capability of cardiac MRI for assessment of differential diagnoses of acute myocardial infarction (e.g. myocarditis) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Thygesen K, Alpert JS, Jaffe AS et al (2013) Third universal definition of myocardial infarction. Eur Heart J 33:2551–2567

    Article  Google Scholar 

  2. Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Article  PubMed  Google Scholar 

  3. Hamm CW, Bassand JP, Agewall S et al (2011) ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 32:2999–3054

    Article  PubMed  Google Scholar 

  4. Sicari R, Nihoyannopoulos P, Evangelista A et al (2009) Stress echocardiography expert consensus statement – executive summary: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur Heart J 30:278–289

    Article  PubMed  Google Scholar 

  5. Amsterdam EA, Kirk JD, Diercks DB et al (2002) Immediate exercise testing to evaluate low-risk patients presenting to the emergency department with chest pain. J Am Coll Cardiol 40:251–256

    Article  PubMed  Google Scholar 

  6. Kang SJ, Kang DH, Song JM et al (2010) Comparison of myocardial contrast echocardiography versus rest sestamibi myocardial perfusion imaging in the early diagnosis of acute coronary syndrome. J Cardiovasc Ultrasound 18:45–51

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sechtem U, Achenbach S, Friedrich M et al (2012) Non-invasive imaging in acute chest pain syndromes. Eur Heart J Cardiovasc Imaging 13:69–78

    Article  PubMed  Google Scholar 

  8. Achenbach S, Barkhausen J, Beer M et al (2012) Konsensusempfehlungen der DRG/DGK/DGPK zum Einsatz der Herzbildgebung mit Computertomographie und Magnetresonanztomographie. Kardiologe 6:105–125

    Article  Google Scholar 

  9. Shiga T, Wajima Z, Apfel CC et al (2006) Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med 166:1350–1356

    Article  PubMed  Google Scholar 

  10. Remy-Jardin M, Pistolesi M, Goodman LR et al (2007) Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology 245:315–329

    Article  PubMed  Google Scholar 

  11. Stein PD, Woodard PK, Weg JG et al (2006) Diagnostic pathways in acute pulmonary embolism: recommendations of the PIOPED II investigators. Am J Med 119:1048–1055

    Article  PubMed  Google Scholar 

  12. Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  13. Bruder O, Wagner A, Lombardi M et al (2013) European Cardiovascular Magnetic Resonance (EuroCMR) registry – multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson 15:9

    Article  PubMed  Google Scholar 

  14. Bruder O, Schneider S, Nothnagel D et al (2011) Acute adverse reactions to gadolinium-based contrast agents in CMR: multicenter experience with 17,767 patients from the EuroCMR Registry. JACC Cardiovasc Imaging 4:1171–1176

    Article  PubMed  Google Scholar 

  15. Kelle S, Nagel E, Voss A et al (2013) A bi-center cardiovascular magnetic resonance prognosis study focusing on dobutamine wall motion and late gadolinium enhancement in 3,138 consecutive patients. J Am Coll Cardiol 61:2310–2312

    Article  PubMed  Google Scholar 

  16. Greenwood JP, Maredia N, Younger JF et al (2011) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460

    Article  PubMed  Google Scholar 

  17. Cury RC, Shash K, Nagurney JT et al (2008) Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 118:837–844

    Article  PubMed  Google Scholar 

  18. Hombach V, Merkle N, Kestler HA et al (2008) Characterization of patients with acute chest pain using cardiac magnetic resonance imaging. Clin Res Cardiol 97:760–767

    Article  PubMed  Google Scholar 

  19. Lockie T, Nagel E, Redwood S, Plein S (2009) Use of cardiovascular magnetic resonance imaging in acute coronary syndromes. Circulation 119:1671–1681

    Article  PubMed Central  PubMed  Google Scholar 

  20. Coelho-Filho OR, Seabra LF, Mongeon FP et al (2011) Stress myocardial perfusion imaging by CMR provides strong prognostic value to cardiac events regardless of patient’s sex. JACC Cardiovasc Imaging 4:850–861

    Article  PubMed  Google Scholar 

  21. Moschetti K, Muzzarelli S, Pinget C et al (2012) Cost evaluation of cardiovascular magnetic resonance versus coronary angiography for the diagnostic work-up of coronary artery disease: application of the European Cardiovascular Magnetic Resonance registry data to the German, United Kingdom, Swiss, and United States health care systems. J Cardiovasc Magn Reson 14:35

    Article  PubMed  Google Scholar 

  22. Pilz G, Patel PA, Fell U et al (2011) Adenosine-stress cardiac magnetic resonance imaging in suspected coronary artery disease: a net cost analysis and reimbursement implications. Int J Cardiovasc Imaging 27:113–121

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hundley WG, Bluemke DA, Finn JP et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55:2614–2662

    Article  PubMed  Google Scholar 

  24. Doltra A, Stawowy P, Dietrich T et al (2013) Magnetic resonance imaging of cardiovascular fibrosis and inflammation: from clinical practice to animal studies and back. Biomed Res Int 2013:676489

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pedersen M (2007) Safety update on the possible causal relationship between gadolinium-containing MRI agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 25:881–883

    Article  PubMed  Google Scholar 

  26. Chow DS, Bahrami S, Raman SS et al (2011) Risk of nephrogenic systemic fibrosis in liver transplantation patients. AJR Am J Roentgenol 197:658–662

    Article  PubMed  Google Scholar 

  27. Becker S, Walter S, Witzke O et al (2010) The German registry for nephrogenic systemic fibrosis: findings from 23 patients. Clin Nephrol 73:426–430

    Article  CAS  PubMed  Google Scholar 

  28. Klein C, Schmal TR, Nekolla SG et al (2007) Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson 9:653–658

    Article  PubMed  Google Scholar 

  29. Klein C, Nekolla SG, Balbach T et al (2004) The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging 20:588–593

    Article  PubMed  Google Scholar 

  30. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    Article  CAS  PubMed  Google Scholar 

  31. Mahrholdt H, Wagner A, Holly TA et al (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106:2322–2327

    Article  CAS  PubMed  Google Scholar 

  32. Pereira RS, Prato FS, Wisenberg G, Sykes J (1996) The determination of myocardial viability using Gd-DTPA in a canine model of acute myocardial ischemia and reperfusion. Magn Reson Med 36:684–693

    Article  CAS  PubMed  Google Scholar 

  33. Ricciardi MJ, Wu E, Davidson CJ et al (2001) Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 103:2780–2783

    Article  CAS  PubMed  Google Scholar 

  34. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  35. Eitel I, Friedrich MG (2011) T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson 13:13

    Article  PubMed  Google Scholar 

  36. Ingkanisorn WP, Rhoads KL, Aletras AH et al (2004) Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 43:2253–2259

    Article  PubMed  Google Scholar 

  37. Beek AM, Kuhl HP, Bondarenko O et al (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42:895–901

    Article  PubMed  Google Scholar 

  38. Choi KM, Kim RJ, Gubernikoff G et al (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107

    Article  CAS  PubMed  Google Scholar 

  39. Wu KC, Zerhouni EA, Judd RM et al (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772

    Article  CAS  PubMed  Google Scholar 

  40. Yan AT, Shayne AJ, Brown KA et al (2006) Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114:32–39

    Article  PubMed  Google Scholar 

  41. Andreu D, Berruezo A, Ortiz-Perez JT et al (2011) Integration of 3D electroanatomic maps and magnetic resonance scar characterization into the navigation system to guide ventricular tachycardia ablation. Circ Arrhythm Electrophysiol 4:674–683

    Article  PubMed  Google Scholar 

  42. Bovenschulte H, Schluter-Brust K, Liebig T et al (2012) MRI in patients with pacemakers: overview and procedural management. Dtsch Arztebl Int 109:270–275

    PubMed Central  PubMed  Google Scholar 

  43. Naehle CP, Kreuz J, Strach K et al (2011) Safety, feasibility, and diagnostic value of cardiac magnetic resonance imaging in patients with cardiac pacemakers and implantable cardioverters/defibrillators at 1.5 T. Am Heart J 161:1096–1105

    Article  PubMed  Google Scholar 

  44. McCrohon JA, Moon JC, Prasad SK et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    Article  CAS  PubMed  Google Scholar 

  45. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  46. Wellnhofer E, Olariu A, Klein C et al (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109:2172–2174

    Article  PubMed  Google Scholar 

  47. Kelle S, Roes SD, Klein C et al (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54:1770–1777

    Article  PubMed  Google Scholar 

  48. Plein S, Greenwood JP, Ridgway JP et al (2004) Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 44:2173–2181

    Article  PubMed  Google Scholar 

  49. Ingkanisorn WP, Kwong RY, Bohme NS et al (2006) Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 47:1427–1432

    Article  PubMed  Google Scholar 

  50. Baccouche H, Mahrholdt H, Meinhardt G et al (2009) Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Eur Heart J 30:2869–2879

    Article  CAS  PubMed  Google Scholar 

  51. Laissy JP, Hyafil F, Feldman LJ et al (2005) Differentiating acute myocardial infarction from myocarditis: diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology 237:75–82

    Article  PubMed  Google Scholar 

  52. Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250–1258

    Article  PubMed  Google Scholar 

  53. Abdel-Aty H, Boye P, Zagrosek A et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815–1822

    Article  PubMed  Google Scholar 

  54. Zagrosek A, Abdel-Aty H, Boye P et al (2009) Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Cardiovasc Imaging 2:131–138

    Article  PubMed  Google Scholar 

  55. Grun S, Schumm J, Greulich S et al (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59:1604–1615

    Article  PubMed  Google Scholar 

  56. Aquaro GD, Gabutti A, Meini M et al (2012) Silent myocardial damage in cocaine addicts. Heart 97:2056–2062

    Article  Google Scholar 

  57. Robaei D, Grieve SM, Nelson GC et al (2010) Cocaine-induced epicardial coronary artery thrombosis resulting in extensive myocardial injury assessed by cardiac magnetic resonance imaging. Eur Heart J 31:2446

    Article  PubMed  Google Scholar 

  58. Nienaber CA, Kische S, Skriabina V, Ince H (2009) Noninvasive imaging approaches to evaluate the patient with known or suspected aortic disease. Circ Cardiovasc Imaging 2:499–506

    Article  PubMed  Google Scholar 

  59. Haage P, Piroth W, Krombach G et al (2003) Pulmonary embolism: comparison of angiography with spiral computed tomography, magnetic resonance angiography, and real-time magnetic resonance imaging. Am J Respir Crit Care Med 167:729–734

    Article  PubMed  Google Scholar 

  60. Kluge A, Luboldt W, Bachmann G (2006) Acute pulmonary embolism to the subsegmental level: diagnostic accuracy of three MRI techniques compared with 16-MDCT. AJR Am J Roentgenol 187:W7–W14

    Article  PubMed  Google Scholar 

  61. Steen H, Madadi-Schroeder M, Lehrke S et al (2010) Staged cardiovascular magnetic resonance for differential diagnosis of troponin T positive patients with low likelihood for acute coronary syndrome. J Cardiovasc Magn Reson 12:51

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Doltra, R. Gebker und S. Kelle geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doltra, A., Gebker, R. & Kelle, S. Klinischer Nutzen einer Kardio-MRT-Untersuchung bei Patienten mit akutem Myokardinfarkt. Kardiologe 8, 78–84 (2014). https://doi.org/10.1007/s12181-013-0546-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-013-0546-8

Schlüsselwörter

Keywords

Navigation