Skip to main content
Log in

Aktueller Stellenwert von CT und MRT in der Koronardiagnostik

Current state of computed tomography and magnetic resonance imaging in the assessment of coronary artery disease

  • CME Zertifizierte Fortbildung
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Die Herzkatheteruntersuchung ist derzeit der Standard zur Diagnostik der koronaren Herzkrankheit (KHK). Neue Methoden wie die Computertomographie (CT) oder die Magnetresonanztomographie (MRT) eröffnen mit der nichtinvasiven Darstellung morphologischer und funktioneller Aspekte der KHK neue Möglichkeiten in der Prävention und für eine zielgerichtete interventionelle Behandlung. So hat sich die CT des Herzens v. a. bei Patienten mit niedriger bis intermediärer Vortestwahrscheinlichkeit zum Ausschluss einer KHK (CT-Koronarangiographie) sowie zur Risikostratifizierung (Kalkscoring) etabliert. Die Stärke der kardialen MRT liegt hingegen in der funktionellen Beurteilung der KHK und ermöglicht eine akkurate Ischämiediagnostik anhand der Beurteilung von Myokardperfusion und -funktion. Darüber hinaus ist die Late-Enhancement-Untersuchung in der Lage, selbst kleinste Myokardnarben zu identifizieren und zu lokalisieren.

Abstract

Coronary catheter angiography is the current reference standard for assessing coronary artery disease (CAD). Novel advanced cardiac imaging methods, such as CT and MRI, are opening new opportunities for the noninvasive assessment of morphologic and functional aspects of CAD and provide new options for prevention and for guiding invasive strategies. Especially in patients with low to intermediate pretest likelihood, cardiac CT has been firmly established for ruling out significant CAD (coronary CT angiography) and for evidence-based risk classification (calcium scoring). The strength of cardiac MRI lies in the functional evaluation of CAD. MRI-based myocardial perfusion and function measurements enable accurate evaluation of potential myocardial ischemia. In addition, late enhancement studies enable high resolution imaging of myocardial scar and viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260:689–698

    Article  PubMed  Google Scholar 

  2. Bastarrika G, Ramos-Duran L, Rosenblum MA et al (2010) Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest Radiol 45:306–313

    Article  PubMed  CAS  Google Scholar 

  3. Bingham SE, Hachamovitch R (2011) Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events. Circulation 123:1509–1518

    Article  PubMed  Google Scholar 

  4. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  5. Chiribiri A, Ishida M, Nagel E et al (2011) Coronary imaging with cardiovascular magnetic resonance: current state of the art. Prog Cardiovasc Dis 54:240–252

    Article  PubMed  Google Scholar 

  6. Chow BJW, Small G, Yam Y et al (2011) Incremental prognostic value of cardiac computed tomography in coronary artery disease using confirm: coronary computed tomography angiography evaluation for clinical outcomes: an international multicenter registry. Circ Cardiovasc Imaging 4:463–472

    Article  PubMed  Google Scholar 

  7. Dorenkamp M, Bonaventura K, Sohns C et al (2012) Direct costs and cost-effectiveness of dual-source computed tomography and invasive coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Heart (British Cardiac Society) 98:460–467

    Google Scholar 

  8. Erbel R, Möhlenkamp S, Moebus S et al (2010) Coronary risk stratification, discrimination, and reclassification improvement nased on quantification of subclinical coronary atherosclerosis. J Am Coll Cardiol 56:1397–1406

    Article  PubMed  Google Scholar 

  9. Goldstein JA, Chinnaiyan KM, Abidov A et al (2011) The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) Trial. J Am Coll Cardiol 58:1414–1422

    Article  PubMed  Google Scholar 

  10. Greenwood JP, Maredia N, Younger JF et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460

    Article  PubMed  Google Scholar 

  11. Hamon M, Fau G, Née G et al (2010) Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson 12(1):29

    Article  PubMed  Google Scholar 

  12. Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507

    Article  PubMed  CAS  Google Scholar 

  13. Jahnke C, Nagel E, Gebker R et al (2007) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115:1769–1776

    Article  PubMed  Google Scholar 

  14. Kim RJM, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  15. Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. J Am Coll Cardiol 58:1989–1997

    Article  PubMed  Google Scholar 

  16. Lattanzi F, Picano E, Adamo E et al (2000) Dobutamine stress echocardiography: safety in diagnosing coronary artery disease. Drug Saf 22:251–262

    Article  PubMed  CAS  Google Scholar 

  17. Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  18. Leber AW, Knez A, Becker A et al (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 43:1241–1247

    Article  PubMed  Google Scholar 

  19. Leber AW, Knez A, Von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  20. Lockie T, Ishida M, Perera D et al (2010) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75

    Article  Google Scholar 

  21. Mahrholdt H (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26:1461–1474

    Article  PubMed  Google Scholar 

  22. Manka R, Jahnke C, Kozerke S et al (2011) Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol 57:437–444

    Article  PubMed  Google Scholar 

  23. Nagel E, Lehmkuhl HB, Klein C et al (1999) Influence of image quality on the diagnostic accuracy of dobutamine stress magnetic resonance imaging in comparison with dobutamine stress echocardiography for the noninvasive detection of myocardial ischemia. Z Kardiol 88:622–630

    Article  PubMed  CAS  Google Scholar 

  24. Nandalur KR, Dwamena BA, Choudhri AF et al (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 50:1343–1353

    Article  PubMed  Google Scholar 

  25. Polonsky TS, Mcclelland RL, Jorgensen NW et al (2010) Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 303:1610–1616

    Article  PubMed  CAS  Google Scholar 

  26. Rozanski A, Gransar H, Shaw LJ et al (2011) Impact of coronary artery calcium scanning on coronary risk factors and downstream testing. J Am Coll Cardiol 57:1622–1632

    Article  PubMed  CAS  Google Scholar 

  27. Sarwar A, Shaw LJ, Shapiro MD et al (2009) Diagnostic and prognostic value of absence of coronary artery calcification. JCMG 2:675–688

    Google Scholar 

  28. Shaw LJ, Min JK, Budoff M et al (2009) Induced cardiovascular procedural costs and resource consumption patterns after coronary artery calcium screening. J Am Coll Cardiol 54:1258–1267

    Article  PubMed  Google Scholar 

  29. Tonino PaL, De Bruyne B, Pijls NHJ et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224

    Article  PubMed  CAS  Google Scholar 

  30. Watkins S, Mcgeoch R, Lyne J et al (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120:2207–2213

    Article  PubMed  Google Scholar 

  31. Ebersberger U, Hoffmann E, Leber AW (2011) 3 T multitransmit MR-perfusion imaging in intermediate coronary lesions in copmarison to invasive FFR-measurements. Circulation 174:A17192

    Google Scholar 

  32. Einstein AJ, Moser KW, Thompsen RC et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.A. Leber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebersberger, U., Schoepf, U., Hoffmann, E. et al. Aktueller Stellenwert von CT und MRT in der Koronardiagnostik. Kardiologe 6, 163–175 (2012). https://doi.org/10.1007/s12181-012-0404-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-012-0404-0

Schlüsselwörter

Keywords

Navigation