Skip to main content
Log in

Anwendung der Magnetokardiographie in der klinischen Kardiologie

Aktueller Stand und Ausblick in die Zukunft

Use of magnetocardiography in clinical cardiology

Current status and future outlook

  • Diagnostische Elektrophysiologie und Devices
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Die Magnetokardiographie (MKG) ist eine berührungs- und strahlungsfreie, nichtinvasive Methode zur Erfassung der elektromagnetischen Aktivität des Herzens. Theoretische Gesichtspunkte und vergleichende Untersuchungen deuten auf einen unterschiedlichen Informationsgehalt von MKG und Elektrokardiogramm (EKG) hin. Obwohl eine Vielzahl von Fragestellungen der kardialen Elektrophysiologie und Pathophysiologie durch magnetokardiographische Untersuchungen beantwortet werden kann, ist die Methode immer noch weitgehend unbekannt. Im Vergleich zum EKG ist der Betrieb eines Magnetokardiographen durch Verwendung supraleitender Sensoren mit der Notwendigkeit zur Kühlung mit flüssigem Helium und aufwendiger magnetischer Abschirmung um ein Vielfaches teurer und nicht am Patientenbett verfügbar. Der Gewinn an diagnostischer Information lässt den Aufwand jedoch als gerechtfertigt erscheinen, da die Sensitivität für ischämisches Myokard sowohl in Ruhe als auch unter Belastung deutlich höher ist als die des EKG. Im Hinblick auf die Risikostratifizierung für den plötzlichen Herztod erlaubt die Magnetfeldanalyse möglicherweise eine genauere Indikationsstellung für die prophylaktische Defibrillatorimplantation. Die räumliche Auflösung ist hoch genug für eine nichtinvasive Lokalisation arrhythmogener Foki, was die Methode insbesondere für das Management von Vorhofflimmerablationen interessant macht. Prospektive und ausreichende klinische Daten fehlen jedoch bisher weitgehend. Es gibt ausreichend Raum für Fantasien über weitere Fragestellungen der klinischen Kardiologie, die mit der MKG beantwortet werden können.

Abstract

Magnetocardiography (MCG) is a noncontact, radiation-free, noninvasive method to measure the electromagnetic activity of the heart. Theoretical aspects and comparative investigations suggest that MCG and electrocardiography (ECG) provide different information. Although many questions regarding cardiac electrophysiology and pathophysiology can be answered by MCG examinations, the method remains largely unknown. In comparison to ECG, MCG is performed using supraconducting sensors requiring cooling with liquid helium and complex magnetic shielding making it considerably more expensive and not available for use at the bedside. However, the gain in diagnostic information obtained would seem to justify the efforts expended, since the sensitivity for detecting ischemic myocardium, both at rest and during stress, is clearly higher than with ECG. With regard to risk stratification for sudden cardiac death, magnetic field analysis possibly facilitates establishing a more precise indication for implantation of a prophylactic defibrillator. The spatial resolution is high enough to noninvasively locate arrhythmogenic foci rendering the method particularly interesting for management of atrial fibrillation ablations. However, prospective and adequate clinical data are still lacking to a large extent. There is room enough to fantasize about further problems in clinical cardiology that might be solved by MCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Luderitz B (2003) Augustus Desire Waller (1856–1922) – the first to record the electrical activity of the human heart. J Interv Card Electrophysiol 9:59–60

    Article  PubMed  Google Scholar 

  2. Baule G, McFee R (1963) Detection of the magnetic field of the heart. Am Heart J 66:95–96

    Article  PubMed  CAS  Google Scholar 

  3. Cohen D, Chandler L (1969) Measurements and a simplified interpretation of magnetocardiograms from humans. Circulation 39:395–402

    PubMed  CAS  Google Scholar 

  4. Cohen D, Edelsack EA, Zimmerman JE (1970) Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer. Appl Phys Lett 16:278–280

    Article  Google Scholar 

  5. Lee YH, Kim JM, Kim K et al (2006) 64-channel magnetocardiogram system based on double relaxation oscillation SQUID planar gradiometers. Supercond Sci Technol 19:284–288

    Article  Google Scholar 

  6. Oosterom A van, Huiskamp GJ (1991) A realistic torso model for magnetocardiography. Int J Card Imaging 7:169–176

    Article  PubMed  Google Scholar 

  7. Plonsey R (1972) Comparative capabilities of electrocardiography and magnetocardiography. Am J Cardiol 29:735–736

    Article  PubMed  CAS  Google Scholar 

  8. Lant J, Stroink G, ten Voorde B ten et al (1990) Complementary nature of electrocardiographic and magnetocardiographic data in patients with ischemic heart disease. J Electrocardiol 23:315–322

    Article  PubMed  CAS  Google Scholar 

  9. Dutz S, Bellemann ME, Leder U, Haueisen J (2006) Passive vortex currents in magneto- and electrocardiography: comparison of magnetic and electric signal strengths. Phys Med Biol 51:145–151

    Article  PubMed  Google Scholar 

  10. Trahms L, Burghoff M, Koch R et al (1995) Im Gegensatz zum EKG zeigt das MKG von Herzgesunden deutliche Veränderungen unter Belastung. Biomed Tech (Berl) (Suppl 1):257

    Google Scholar 

  11. Strasburger JF, Cheulkar B, Wakai RT (2008) Magnetocardiography for fetal arrhythmias. Heart Rhythm 5:1073–1076

    Article  PubMed  Google Scholar 

  12. Brockmeier K, Schmitz L, Bobadilla Chavez JD et al (1997) Magnetocardiography and 32-lead potential mapping: repolarization in normal subjects during pharmacologically induced stress. J Cardiovasc Electrophysiol 8:615–626

    Article  PubMed  CAS  Google Scholar 

  13. Chen J, Thomson PD, Nolan V, Clarke J (2004) Age and sex dependent variations in the normal magnetocardiogram compared with changes associated with ischemia. Ann Biomed Eng 32:1088–1099

    Article  PubMed  Google Scholar 

  14. Koch H (2004) Recent advances in magnetocardiography. J Electrocardiol 37(Suppl):117–122

    Article  PubMed  Google Scholar 

  15. Morise AP, Diamond GA (1995) Comparison of the sensitivity and specificity of exercise electrocardiography in biased and unbiased populations of men and women. Am Heart J 130:741–747

    Article  PubMed  CAS  Google Scholar 

  16. Severi S, Picano E, Michelassi C et al (1994) Diagnostic and prognostic value of dipyridamole echocardiography in patients with suspected coronary artery disease. Comparison with exercise electrocardiography. Circulation 89:1160–1173

    PubMed  CAS  Google Scholar 

  17. Hoffmann R, Lethen H, Kleinhans E et al (1993) Comparative evaluation of bicycle and dobutamine stress echocardiography with perfusion scintigraphy and bicycle electrocardiogram for identification of coronary artery disease. Am J Cardiol 72:555–559

    Article  PubMed  CAS  Google Scholar 

  18. Bogaty P, Guimond J, Robitaille NM et al (1997) A reappraisal of exercise electrocardiographic indexes of the severity of ischemic heart disease: angiographic and scintigraphic correlates. J Am Coll Cardiol 29:1497–1504

    Article  PubMed  CAS  Google Scholar 

  19. Rubinshtein R, Halon DA, Gaspar T et al (2007) Usefulness of 64-slice multidetector computed tomography in diagnostic triage of patients with chest pain and negative or nondiagnostic exercise treadmill test result. Am J Cardiol 99:925–929

    Article  PubMed  Google Scholar 

  20. Cury RC, Cattani CA, Gabure LA et al (2006) Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease. Radiology 240:39–45

    Article  PubMed  Google Scholar 

  21. Trautwein D, Dudel J (1956) Aktionspotential und Kontraktion des Herzmuskels unter Sauerstoffmangel. Pflugers Archiv Eur J Physiol 263:23–32

    Article  CAS  Google Scholar 

  22. Kardesch M, Hogancamp CE, Bing RJ (1958) The effect of complete ischemia on the intracellular electrical activity of the whole mammalian heart. Circ Res 6:715–720

    PubMed  CAS  Google Scholar 

  23. Cohen D, Kaufman LA (1975) Magnetic determination of the relationship between the S-T segment shift and the injury current produced by coronary artery occlusion. Circ Res 36:414–424

    PubMed  CAS  Google Scholar 

  24. Hailer B, Chaikovsky I, Auth-Eisernitz S et al (2005) The value of magnetocardiography in patients with and without relevant stenoses of the coronary arteries using an unshielded system. Pacing Clin Electrophysiol 28:8–16

    Article  PubMed  Google Scholar 

  25. Tsukada K, Miyashita T, Kandori A et al (2000) An iso-integral mapping technique using magnetocardiogram, and its possible use for diagnosis of ischemic heart disease. Int J Card Imaging 16:55–66

    Article  PubMed  CAS  Google Scholar 

  26. Kandori A, Kanzaki H, Miyatake K et al (2001) A method for detecting myocardial abnormality by using a total current-vector calculated from ST-segment deviation of a magnetocardiogram signal. Med Biol Eng Comput 39:21–28

    Article  PubMed  CAS  Google Scholar 

  27. Leder U, Pohl HP, Michaelsen S et al (1998) Noninvasive biomagnetic imaging in coronary artery disease based on individual current density maps of the heart. Int J Cardiol 64:83–92

    Article  PubMed  CAS  Google Scholar 

  28. Lim HK, Kwon H, Chung N et al (2009) Usefulness of magnetocardiogram to detect unstable angina pectoris and non-ST elevation myocardial infarction. Am J Cardiol 103:448–454

    Article  PubMed  Google Scholar 

  29. Hänninen H, Takala P, Mäkijärvi M et al (2000) Detection of exercise-induced myocardial ischemia by multichannel magnetocardiography in single vessel coronary artery disease. Ann Noninvasive Electrocardiol 5:147–157

    Article  Google Scholar 

  30. Hanninen H, Takala P, Korhonen P et al (2002) Features of ST segment and T-wave in exercise-induced myocardial ischemia evaluated with multichannel magnetocardiography. Ann Med 34:120–129

    Article  PubMed  Google Scholar 

  31. Kandori A, Kanzaki H, Miyatake K et al (2001) A method for detecting myocardial abnormality by using a current-ratio map calculated from an exercise-induced magnetocardiogram. Med Biol Eng Comput 39:29–34

    Article  PubMed  CAS  Google Scholar 

  32. Takala P, Hanninen H, Montonen J et al (2002) Heart rate adjustment of magnetic field map rotation in detection of myocardial ischemia in exercise magnetocardiography. Basic Res Cardiol 97:88–96

    Article  PubMed  Google Scholar 

  33. Park JW, Jung F (2004) Qualitative and quantitative description of myocardial ischemia by means of magnetocardiography. Biomed Tech (Berl) 49:267–273

    Google Scholar 

  34. Park JW, Hill PM, Chung N et al (2005) Magnetocardiography predicts coronary artery disease in patients with acute chest pain. Ann Noninvasive Electrocardiol 10:312–323

    Article  PubMed  Google Scholar 

  35. Tolstrup K, Madsen BE, Ruiz JA et al (2006) Non-invasive resting magnetocardiographic imaging for the rapid detection of ischemia in subjects presenting with chest pain. Cardiology 106:270–276

    Article  PubMed  Google Scholar 

  36. Park JW, Leithauser B, Hill P, Jung F (2008) Resting magnetocardiography predicts 3-year mortality in patients presenting with acute chest pain without ST segment elevation. Ann Noninvasive Electrocardiol 13:171–179

    Article  PubMed  Google Scholar 

  37. Park JW, Leithauser B, Vrsansky M, Jung F (2008) Dobutamine stress magnetocardiography for the detection of significant coronary artery stenoses – a prospective study in comparison with simultaneous 12-lead electrocardiography. Clin Hemorheol Microcirc 39:21–32

    PubMed  Google Scholar 

  38. Makela T, Pham QC, Clarysse P et al (2003) A 3-D model-based registration approach for the PET, MR and MCG cardiac data fusion. Med Image Anal 7:377–389

    Article  PubMed  Google Scholar 

  39. Ogata K, Kandori A, Miyashita T et al (2006) Visualization of three-dimensional cardiac electrical excitation using standard heart model and anterior and posterior magnetocardiogram. Int J Cardiovasc Imaging 22:581–593

    Article  PubMed  Google Scholar 

  40. Nakai K, Izumoto H, Kawazoe K et al (2006) Three-dimensional recovery time dispersion map by 64-channel magnetocardiography may demonstrate the location of a myocardial injury and heterogeneity of repolarization. Int J Cardiovasc Imaging 22:573–580

    Article  PubMed  Google Scholar 

  41. Huikuri HV, Castellanos A, Myerburg RJ (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345:1473–1482

    Article  PubMed  CAS  Google Scholar 

  42. Korhonen P, Montonen J, Makijarvi M et al (2000) Late fields of the magnetocardiographic QRS complex as indicators of propensity to sustained ventricular tachycardia after myocardial infarction. J Cardiovasc Electrophysiol 11:413–420

    Article  PubMed  CAS  Google Scholar 

  43. Godde P, Agrawal R, Muller HP et al (2001) Magnetocardiographic mapping of QRS fragmentation in patients with a history of malignant tachyarrhythmias. Clin Cardiol 24:682–688

    Article  PubMed  CAS  Google Scholar 

  44. Korhonen P, Husa T, Tierala I et al (2006) Increased intra-QRS fragmentation in magnetocardiography as a predictor of arrhythmic events and mortality in patients with cardiac dysfunction after myocardial infarction. J Cardiovasc Electrophysiol 17:396–401

    Article  PubMed  Google Scholar 

  45. Korhonen P, Vaananen H, Makijarvi M et al (2001) Repolarization abnormalities detected by magnetocardiography in patients with dilated cardiomyopathy and ventricular arrhythmias. J Cardiovasc Electrophysiol 12:772–777

    Article  PubMed  CAS  Google Scholar 

  46. Hailer B, Van Leeuwen P, Lange S et al (1998) Spatial dispersion of the magnetocardiographically determined qt interval and its components in the identification of patients at risk for arrhythmia after myocardial infarction. Ann Noninvasive Electrocardiol 3:311–318

    Article  Google Scholar 

  47. Oikarinen L, Paavola M, Montonen J et al (1998) Magnetocardiographic QT interval dispersion in postmyocardial infarction patients with sustained ventricular tachycardia: validation of automated QT measurements. Pacing Clinic Electrophysiol 21:1934–1942

    Article  CAS  Google Scholar 

  48. Oikarinen L, Viitasalo M, Korhonen P et al (2001) Postmyocardial infarction patients susceptible to ventricular tachycardia show increased T wave dispersion independent of delayed ventricular conduction. J Cardiovasc Electrophysiol 12:1115–1120

    Article  PubMed  CAS  Google Scholar 

  49. Fenici R, Melillo G (1993) Magnetocardiography: ventricular arrhythmias. Eur Heart J 14(Suppl E):53–60

    Article  PubMed  Google Scholar 

  50. Kandori A, Miyashita T, Tsukada K et al (2001) Prenatal diagnosis of QT prolongation by fetal magnetocardiogram – use of QRS and T-wave current-arrow maps. Physiol Meas 22:377–387

    Article  PubMed  CAS  Google Scholar 

  51. Kandori A, Shimizu W, Yokokawa M et al (2002) Detection of spatial repolarization abnormalities in patients with LQT1 and LQT2 forms of congenital long-QT syndrome. Physiol Meas 23:603–614

    Article  PubMed  Google Scholar 

  52. Kandori A, Miyashita T, Ogata K et al (2006) Electrical space-time abnormalities of ventricular depolarization in patients with Brugada syndrome and patients with complete right-bundle branch blocks studied by magnetocardiography. Pacing Clinic Electrophysiol 29:15–20

    Article  Google Scholar 

  53. Joung B, Kim K, Lee YH et al (2008) Magnetic dispersion of the late repolarization in Brugada syndrome. Circ J 72:94–101

    Article  PubMed  Google Scholar 

  54. Fenici R, Pesola K, Korhonen P et al (1998) Magnetocardiographic pacemapping for nonfluoroscopic localization of intracardiac electrophysiology catheters. Pacing and clinical electrophysiology. Pacing Clinic Electrophysiol 21:2492–2499

    Article  CAS  Google Scholar 

  55. Makijarvi M, Nenonen J, Leinio M et al (1992) Localization of accessory pathways in Wolff-Parkinson-White syndrome by high-resolution magnetocardiographic mapping. J Electrocardiol 25:143–155

    Article  PubMed  CAS  Google Scholar 

  56. Weismuller P, Abraham-Fuchs K, Schneider S et al (1992) Magnetocardiographic non-invasive localization of accessory pathways in the Wolff-Parkinson-White syndrome by a multichannel system. Eur Heart J 13:616–622

    PubMed  CAS  Google Scholar 

  57. Moshage W, Achenbach S, Gohl K, Bachmann K (1996) Evaluation of the non-invasive localization accuracy of cardiac arrhythmias attainable by multichannel magnetocardiography (MCG). Int J Card Imaging 12:47–59

    Article  PubMed  CAS  Google Scholar 

  58. Mantynen V, Vitikainen A, Koskinen R et al (2007) Magnetocardiography is sensitive to differences in inter-atrial conduction in patients with paroxysmal lone atrial fibrillation. Int Congr Ser 1300:508–511

    Article  Google Scholar 

  59. Jurkko R, Mantynen V, Lehto M et al (2010) Interatrial conduction in patients with paroxysmal atrial fibrillation and in healthy subjects. Int J Cardiol 145:455–460

    Article  PubMed  Google Scholar 

  60. Kim D, Kim K, Lee YH, Ahn H (2007) Detection of atrial arrhythmia in superconducting quantum interference device magnetocardiography; preliminary result of a totally-noninvasive localization method for atrial current mapping. Interact Cardiovasc Thorac Surg 6:274–279

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.W. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leithäuser, B., Jung, F. & Park, J. Anwendung der Magnetokardiographie in der klinischen Kardiologie. Kardiologe 6, 128–134 (2012). https://doi.org/10.1007/s12181-012-0401-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-012-0401-3

Schlüsselwörter

Keywords

Navigation