Skip to main content
Log in

Hyperglykämie

Ein prognosebestimmender Faktor des akuten Koronarsyndroms? Ein Update

Hyperglycemia

Prognostic factor for acute coronary syndrome? An update

  • Originalien
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Fragestellung

Wir untersuchten die Frage, ob die Hyperglykämie, definiert durch den klinisch relevanten Grenzwert 6,67 mmol/l (120 mg/dl), die 15- und 180-Tages-Mortalität des akuten Koronarsyndroms (ACS) beeinflusst.

Methoden

Retrospektiv wurden 161 Patienten (Pt.), die im Rahmen eines ACS vorstellig wurden, anhand des Blutzuckerspiegels (BZ) bei Aufnahme in 2 Gruppen geteilt: Gruppe A: BZ ≥6,67 mmol/l (120 mg/dl), Gruppe B: BZ <6,67 mmol/l. Ermittelt wurden die kardiovaskulären Risikofaktoren, Standard-12-Kanal-EKG, Kreatinkinase, Troponin I, CRP, Killip-Klassifikation, TIMI-Fluss-Phänomene, Gefäßstatus, linksventrikuläre Ejektionsfraktion, Überlebenszeit zum Zeitpunkt 15 und 180 Tage.

Ergebnisse

Bei Aufnahme befanden sich 104 der 161 Pt. in einer hyperglykämen Stoffwechsellage; 57 Patienten gehören der Vergleichsgruppe an. Es besteht ein signifikant gehäuftes Auftreten der kardiovaskulären Risikofaktoren arterielle Hypertonie, Diabetes mellitus sowie ein erhöhter Frauenanteil in der Gruppe der hyperglykämen Patienten. Ein signifikanter Unterschied zwischen den Blutzuckergruppen besteht nicht. Innerhalb der ersten 15 Tage verstarben 7 Patienten, von denen 6 zur Gruppe der hyperglykämen Patienten zählen und eine Hyperlipoproteinämie aufweisen.

Schlussfolgerungen

Da bei 6 der 7 innerhalb der ersten 15 Tage Verstorbenen eine Hyperlipoproteinämie vorliegt, kann die Notwendigkeit einer aggressiven antihyperlipidämischen Therapie bestehen. Die Hyperglykämie stellt weder einen unabhängigen Prädiktor der 15- noch der 180-Tages-Mortalität dar. Die Sterblichkeit ist mit dem vermehrten Auftreten des kardiogenen Schocks, Ejektionsfraktionen <30% und TIMI-I-Flüssen assoziiert.

Abstract

Background

Recent studies have shown increased mortality in patients admitted for acute coronary syndrome (ACS) who exhibit any high levels indicating hyperglycemia (e.g., 180 or 200 mg/dl). Based on this observation we investigated the question of whether hyperglycemia, defined as the clinically relevant level of 6.67 mmol/l (120 mg/dl), has an effect on 15- and 180-day mortality.

Methods

A total of 161 patients who presented with ACS were retrospectively divided into two groups based on the blood glucose level (BGL) upon admittance: group A: BGL ≥ 6.67 mmol/l (120 mg/dl) and group B: < 6.67 mmol/l. Cardiovascular risk factors, standard 12-channel ECG, creatine kinase, troponin I, C-reactive protein, Killip classification, TIMI 1 flow phenomena, vascular status (one- to three-vessel disease), left ventricular ejection fraction, and survival at 15 and 180 days were determined. For statistical analysis the mean, standard deviation, Student’s t test, chi-square test, Fisher’s exact test, long-rank test, and Kaplan-Meier analysis were employed (significance set at p < 0.05).

Results

Of the 161 patients, 104 (64.6%) were considered to be hyperglycemic upon admission; 57 patients (35.4%) were in the control group. There was a significantly high occurrence of the cardiovascular risk factors hypertension (p = 0.05) and diabetes mellitus (p < 0.001) and a high proportion of women (p = 0.04) in the group of hyperglycemic patients. There was no significant difference between the two groups with regard to 180-day (p = 0.49) or 15-day mortality (p = 0.22). Data from nine patients (5.6%) were deleted. Seven patients (4.3%) died within the first 15 days, all in cardiogenic shock (100%), six of whom were categorized in the group of hyperglycemic patients and exhibited hyperlipoproteinemia. These patients who died with the first 15 days demonstrated a significantly higher incidence of TIMI 1 flow phenomena (p = 0.01), left ventricular ejection fraction < 30% (p < 0.001), and cardiogenic shock (p < 0.001).

Conclusions

In the context of ACS, hyperglycemia occurs more frequently in women, diabetics, and subjects with arterial hypertension. Since hyperlipoproteinemia was present in five of the six patients (85.7%) who died within the first 15 days, there could be a need for aggressive antihyperlipidemic treatment with the goal of reducing mortality. Hyperglycemia does not constitute an independent predictor of either 15- or 180-day mortality. The mortality rate is associated with increased occurrence of cardiogenic shock, ejection fractions < 30%, and TIMI 1 flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Cullen P, Schulte H, Assmann G (1998) Smoking, lipoproteins and coronary heart disease risk. Data from the Münster Heart Study (PROCAM). Eur Heart J 19(11):1632–1641

    Article  CAS  PubMed  Google Scholar 

  2. Hokama JY, Ritter LS, Davis-Gorman G et al (2000) Diabetes enhances leukocyte accumulation in the coronary microcirculation early in reperfusion following ischemia. J Diabetes Complications 14:96–107

    Article  CAS  PubMed  Google Scholar 

  3. Prull MW, Trappe H-J (2007) Gerinnungsaktivierung bei Nicht-ST-Hebungs-Infarkt (NSTEMI). Spielt der Diabetes mellitus eine Rolle? Intensivmed 44:158–165

    Article  Google Scholar 

  4. Bassand J-P, Hamm CW, Ardissino D et al (2007) Guidlines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: The Task Force for the Diagnosis and Treatment of Non-ST-Segment Elevation Acute Coronary Syndromes of the European Society of Cardiology. Eur Heart J 28:1598–1660

    Article  CAS  PubMed  Google Scholar 

  5. Van Werf F de, Bax J, Betriu A et al (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: The Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology. Eur Heart J 29:2909–2945

    Article  Google Scholar 

  6. Keil U, Liese AD, Hense HW et al (1998) Classical risk factors and their impact on incident non-fatal and fatal myocardial infarction and all-cause mortality in southern Germany. Results from the MONICA Augsburg cohort study 1984–1992. Monitoring Trends and Determinants in Cardiovascular Diseases. Eur Heart J 19(8):1197–1207

    Article  CAS  PubMed  Google Scholar 

  7. Malmberg K, Norhammer A, Wedel H, Ryden L (1999) Glycometabolic state at the admission: important risk markers of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction. Circulation 99:2626–2632

    CAS  PubMed  Google Scholar 

  8. Norhammer AM, Ryden L, Malmberg K (1999) Admission plasma glucose. Diabetes Care 22:1827–1831

    Article  Google Scholar 

  9. Franklin K, Goldberg RJ, Spencer F et al (2004) Implications of diabetes in patients with acute coronary syndromes. The Global Registry of Acute Coronary Events. Arch Intern Med 164:1457–1463

    Article  PubMed  Google Scholar 

  10. Agewall S, Wikstrand J, Fagerberg B (1998) Prothrombin fragment 1+2 is a risk factor for myocardial infarction in treated hypertensive men. J Hypertens 16:537–541

    Article  CAS  PubMed  Google Scholar 

  11. Asakawa H, Tokunaga K, Kawakami F (2000) Elevation of fibrinogen and thrombin-antithrombin III complex levels of type 2 diabetes mellitus patients with retinopathy and nephropathy. J Diabetes Complications 14:121–126

    Article  CAS  PubMed  Google Scholar 

  12. Giannitsis E, Siemens HJ, Mitusch R et al (1999) Prothrombin fragments 1+2, thrombin-antithrombin III complexes, fibrin monomers and fibrinogen in patients with coronary atherosclerosis. Int J Cardiol 68:269–274

    Article  CAS  PubMed  Google Scholar 

  13. Paramo JA, Orbe J, Beloqui O et al (2004) Prothrombin fragment 1+2 is associated with carotis intima-media thickness in subjects free of clinical cardiovascular disease. Stroke 35:1085–1089

    Article  CAS  PubMed  Google Scholar 

  14. Thor M, Yu A, Swedenborg J (2002) Markers of inflammation and hypercoagulability in diabetic and nondiabetic patients with lower extremity ischemia. Thromb Res 105:379–383

    Article  CAS  PubMed  Google Scholar 

  15. Endler G, Klimesch A, Sunder-Plassmann H et al (2002) Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. Br J Haematol 117:399–404

    Article  PubMed  Google Scholar 

  16. Ferroni P, Basili S, Falco A, Davi G (2004) Platelet activation in type 2 diabetes mellitus. J Thromb Haemost 2:1282–1291

    Article  CAS  PubMed  Google Scholar 

  17. Komarov A, Panchenko E, Dobrovolsky A et al (2002) D-dimer and platelet aggregability are related to thrombotic events in patients with peripheral arterial occlsive disease. Eur Heart J 23(16):1309–1316

    Article  CAS  PubMed  Google Scholar 

  18. Papanas N, Symeonidis G, Maltezos E et al (2004) Mean platelet volume in patients with type 2 diabetes mellitus. Platelets 15:475–478

    Article  CAS  PubMed  Google Scholar 

  19. Iwakura K, Ito H, Ikushima M et al (2003) Association between hyperglycemia and the no-reflow phenomenon in patients with acute myocardial infarction. J Am Coll Cardiol 41:1–7

    Article  CAS  PubMed  Google Scholar 

  20. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  21. Mann KG (1999) Biochemistry and physiology of blood coagulation. Thromb Haemost 82:165–174

    CAS  PubMed  Google Scholar 

  22. Kannel WB (2000) Fifty years of Framingham Study contributions to understanding hypertension. J Hum Hypertens 14(2):83–90

    Article  CAS  PubMed  Google Scholar 

  23. Ziegler A, Lange S, Bender R (2007) Überlebenszeitanalyse: Eigenschaften und Kaplan-Meier-Methode. Dtsch Med Wochenschr 132:e36–e38

    Article  PubMed  Google Scholar 

  24. Ainla T, Baburin A, Teesalu R, Rahu M (2005) The association between hyperglycaemia on admission and 180-day mortality in acute myocardial infarction patients with and without diabetes. Diabet Med 22(10):1321–1325

    Article  CAS  PubMed  Google Scholar 

  25. Capes SE, Hunt D, Malmberg K, Gerstein HC (2000) Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 355(9206):773–778

    Article  CAS  PubMed  Google Scholar 

  26. Hadjadj S, Coisne D, Mauco G et al (2004) Prognostic value of admission plasma glucose and HbA in acute myocardial infarction. Diabet Med 21(4):305–310

    Article  CAS  PubMed  Google Scholar 

  27. Ishihara M, Kojima S, Sakamoto T et al (2005) Acute hyperglycemia is associated with adverse outcome after acute myocardial infarction in the coronary internention era. Am Heart J 150(4):814–820

    Article  CAS  PubMed  Google Scholar 

  28. Sleiman I, Morandi A, Sabatini T et al (2008) Hyperglycemia as a predictor of in-hospital mortality in elderly patients without diabetes mellitus admitted to a sub-intensive care unit. J Am Geriatr Soc 56(6):1106–1110

    Article  PubMed  Google Scholar 

  29. Sala J, Masia R, Gonzalez de Molina F-J et al (2002) For the REGICOR Investigators. Short-term mortality of myocardial infarction patients with diabetes or hyperglycaemia during admission. J Epidemiol Community Health 56:707–712

    Article  CAS  PubMed  Google Scholar 

  30. Allison SP, Tomlin PJ, Chamberlain MJ (1969) Some effects of anaesthesia and surgery on carbohydrate and fat metabolism. Br J Anaesth 41:588–592

    Article  CAS  PubMed  Google Scholar 

  31. Clarke RSJ, Johnston H, Sheridan B (1970) The influence of anaesthesis and surgery on plasma cortisol, insulin and free fatty acids. Br J Anaesth 42:295–299

    Article  CAS  PubMed  Google Scholar 

  32. Oliver MF, Opie LH (1994) Effects of glucose and fatty acids on myocardial ischaemia and arrythmias. Lancet 343:155–158

    Article  CAS  PubMed  Google Scholar 

  33. Malmberg K. for the DIGAMI Study Group (1997) Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ 314:1512–1515

    CAS  PubMed  Google Scholar 

  34. Holubarsch C, Ruf T, Goldstein DJ et al (1996) Existence of the Frank-Starling mechanism in the failing human heart: investigations on the organ, tissue, and sarcomere levels. Circulation 94:683–689

    CAS  PubMed  Google Scholar 

  35. Marcus JT, Gotte MJ, Van Rossum AC et al (1997) Myocardial function in infarcted and remote regions early after infarction in man: assessment by magnetic resonance tagging and strain analysis. Magn Reson Med 38:803–810

    Article  CAS  PubMed  Google Scholar 

  36. Tansey MJB, Opie LH (1986) Plasma glucose on admission to hospital as a metabolic index of the severity of acute myocardial infarction. Can J Cardiol 2:326–331

    CAS  PubMed  Google Scholar 

  37. Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The relationship between glucose and incident cardiovascular events: a metaregression analysis of published data from 20 studies of 95, 783 individuals followed for 12,4 years. Diabetes Care 22:233–240

    Article  CAS  PubMed  Google Scholar 

  38. Kersten JR, Toller WG, Tessmer JP et al (2001) Hyperglycemia reduces coronary blood flow through a nitric oxide-mediated mechanism. Am J Physiol Heart Circ Physiol 281:H2097–H2104

    CAS  PubMed  Google Scholar 

  39. Marfella R, Esposito K, Giunta R et al (2000) Circulating adhesion molecules in humans: role of hyperglycemia and hyperinsulinemia. Circulation 101:2247–2251

    CAS  PubMed  Google Scholar 

  40. Shechter M, Merz NB, Paul-Labrador MJ, Kaul S (2000) Blood glucose and platelet-dependent thrombosis in patients with coronary artery disease. J Am Coll Cardiol 35:300–307

    Article  CAS  PubMed  Google Scholar 

  41. Title LM, Cummings PM, Giddens K, Nassar BA (2000) Oral glucose loading acutely attenuates endothelium-dependent vasodilatation in healthy adults without diabetes: an effect prevented by vitamins C and E. J Am Coll Cardiol 36:2185–2191

    Article  CAS  PubMed  Google Scholar 

  42. Booth G, Stalker TJ, Lefer AM, Scalia R (2001) Elevated ambient glucose induces acute inflammatory events in the microvasculature: effects of insulin. Am J Physiol Endocrinol Metab 280:E848–E856

    CAS  PubMed  Google Scholar 

  43. Montalescot G, Barragan P, Wittenberg O et al (2001) Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction. N Engl J Med 344:1895–1903

    Article  CAS  PubMed  Google Scholar 

  44. Nakatani D, Sakata Y, Mizuno H et al (2009) Impact of diabetes mellitus on rehospitalization for heart failure among survivors of AMI. Circ J 73:662–666

    Article  PubMed  Google Scholar 

  45. Ito H, Maruyama A, Iwakura K et al (1996) Clinical implications of the „no-reflow“ phenomenon. A predictor of complications and left ventricular remodelling in reperfused anterior wall myocardial infarction. Circulation 93:223–228

    CAS  PubMed  Google Scholar 

  46. Nyström T, Nygren A, Sjöholm A (2005) Persistent endothelian dysfunction is realated to elevated C-reactive protein (CRP) levels in Type II diabetic patients after acute myocardial infarction. Clin Sci 108:121–128

    Article  PubMed  Google Scholar 

  47. Kosuge M, Kimura K, Kojima S et al (2005) Japanese Acute Coronary Syndrome Study (JACSS) Investigators. Effects of glucose abnormalities on in-hospital outcome after coronary intervention for acute myocardial infarction. Circ J 69(4):375–379

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.W. Prull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirdemann, H., Prull, M., Sasko, B. et al. Hyperglykämie. Kardiologe 4, 488–496 (2010). https://doi.org/10.1007/s12181-010-0303-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-010-0303-1

Schlüsselwörter

Keywords

Navigation