Skip to main content
Log in

Ionenkanalerkrankung: vom EKG bis zur genetischen Diagnostik

Wie weit muss man gehen?

Ion channel disease: from ECG to genetic diagnostics

How far must one go

  • CME Weiterbildung • Zertifizierte Fortbildung
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Die Charakterisierung krankheitsverursachender Gendefekte hat in den vergangenen Jahre wichtige Einblicke in die molekulare Pathogenese von Herzrhythmusstörungen ermöglicht. Für die primär elektrischen Erkrankungen des Herzens, die in erster Linie das lange und kurze QT-Syndrom, das Brugada-Syndrom und katecholaminerge polymorphe Kammertachykardien umfassen, konnten Mutationen in Genen nachgewiesen werden, die unterschiedlichste kardiale Ionenkanäle kodieren. Die resultierenden elektrophysiologischen Veränderungen spielen eine kritische Rolle bei der Entstehung und Aufrechterhaltung teilweise lebensbedrohlicher Herzrhythmusstörungen. Die Möglichkeit, ihre genetische Grundlage zu ermitteln, eröffnet für die Praxis zum einen die Möglichkeit einer genauen Diagnosestellung, zum anderen ist im Einzelfall auch eine Risikostratifizierung bezüglich eines plötzlichen Herztodes möglich. Im Hinblick auf den therapeutischen Nutzen einer genetischen Diagnostik müssen die einzelnen primär elektrischen Erkrankungen differenziert werden.

Abstract

The characterization of gene disorders has provided important insights into the pathophysiological understanding of cardiac arrhythmias. Primary electrical disorders including the long and short QT syndrome, the Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia have been associated with mutations in various ion channel genes. These mutations play a critical role in the initiation as well as maintenance of life-threatening arrhythmias. The option of exploring the genetic background has given the opportunity of diagnosing a familiar disorder and in individual cases significantly contributes to risk stratification. The therapeutic benefit of genetic testing is still limited but plays an increasing role in part of the primary electrical diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Andersen ED, Krasilnikoff PA, Overvad H (1971) Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand 60: 559–564

    PubMed  CAS  Google Scholar 

  2. Bezzina C, Veldkamp MW, van den BM, Postma AV et al. (1999) A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 85: 1206–1213

    PubMed  CAS  Google Scholar 

  3. Brugada J, Brugada R, Antzelevitch C et al. (2002) Long-term follow-up of individuals with the electrocardiographic pattern of right bundle branch block and ST-segment elevation in precordial leads V1 to V3. Circulation 105: 73–78

    Article  PubMed  Google Scholar 

  4. Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 20: 1391–1396

    Article  PubMed  CAS  Google Scholar 

  5. Chen Q, Kirsch GE, Zhang D et al. (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392: 293–296

    Article  PubMed  CAS  Google Scholar 

  6. Compton SJ, Lux RL, Ramsey MR et al. (1996) Genetically defined therapy of inherited long-QT syndrome: correction of abnormal repolarization by potassium. Circulation 94: 1018–1022

    PubMed  CAS  Google Scholar 

  7. Eckardt L (2007) Gender differences in Brugada syndrome. J Cardiovasc Electrophysiol 18: 422–424

    Article  PubMed  Google Scholar 

  8. Eckardt L, Haverkamp W, Borggrefe M, Breithardt G (1998) Experimental models of torsade de pointes. Cardiovasc Res 39: 178–193

    Article  PubMed  CAS  Google Scholar 

  9. Eckardt L, Probst V, Smits JP et al. (2005) Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation 111: 257–263

    Article  PubMed  Google Scholar 

  10. Jervell A, Lange-Nielsen F (1957) Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am Heart J 54: 59–68

    Article  PubMed  CAS  Google Scholar 

  11. Junker J, Haverkamp W, Schulze-Bahr E et al. (2002) Amiodarone and acetazolamide for the treatment of genetically confirmed severe Andersen syndrome. Neurology 59: 466

    PubMed  CAS  Google Scholar 

  12. Miyazaki T, Mitamura H, Miyoshi S et al. (1996) Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol 27: 1061–1070

    Article  PubMed  CAS  Google Scholar 

  13. Mohler PJ, Schott JJ, Gramolini AO et al. (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421: 634–639

    Article  PubMed  CAS  Google Scholar 

  14. Moss AJ, Zareba W, Benhorin J et al. (1995) ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92: 2929–2934

    PubMed  CAS  Google Scholar 

  15. Paul M, Gerss J, Schulze-Bahr E et al. (2007) Role of programmed ventricular stimulation in patients with Brugada syndrome: a meta-analysis of worldwide published data. Eur Heart J 5 (Epub ahead of print)

  16. Plaster NM, Tawil R, Tristani-Firouzi M et al. (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. CELL 105: 511–519

    Article  PubMed  CAS  Google Scholar 

  17. Priori SG, Napolitano C, Gasparini M et al. (2000) Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation 102: 2509–2515

    PubMed  CAS  Google Scholar 

  18. Rolf S, Bruns HJ, Wichter T et al. (2003) The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur Heart J 24: 1104–1112

    Article  PubMed  CAS  Google Scholar 

  19. RomanoC, GemmeG, Ponglione R (1963) Rare Cardiac Arrhythmias of the pediatric age. Syncopal attacks due to paroxysmal ventricular fibrillation. Clin Pediatr (Bologna) 45: 656–683

    Google Scholar 

  20. Smits JP, Eckardt L, Probst V et al. (2002) Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol 40: 350–356

    Article  PubMed  CAS  Google Scholar 

  21. Veldkamp MW, Viswanathan PC, Bezzina C et al. (2000) Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res 86: E91–E97

    PubMed  CAS  Google Scholar 

  22. Ward OC (1964) A new familial cardiac syndrome in children. J Irish Med Assoc 54: 103–109

    CAS  Google Scholar 

  23. Wilde AA, Antzelevitch C, Borggrefe M et al. (2002) Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 106: 2514–2519

    Article  PubMed  Google Scholar 

  24. Schwartz PJ (1997) The long QT syndrome. Futura Publishing, Armonk New York

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Eckardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckardt, L., Haverkamp, W. Ionenkanalerkrankung: vom EKG bis zur genetischen Diagnostik. Kardiologe 1, 283–296 (2007). https://doi.org/10.1007/s12181-007-0033-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-007-0033-1

Schlüsselwörter

Keywords

Navigation