Skip to main content
Log in

Congenital Cervical Stenosis: a Review of the Current Literature

  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Congenital cervical stenosis (CCS) is a phenomenon in which an individual has a narrow canal due to abnormal anatomy which can present with earlier degenerative symptoms due to a reduced sagittal diameter. The diagnosis of CCS is important to individual treatment and preventative measures. Often, athletes are warned against sport participation that may cause damage to the cervical spine. There may be a predisposition in certain populations, but lack of data limits conclusions. The current review investigates recent literature on the definition, pathoanatomy, clinical presentation, and management of CCS. It specifically interrogates potential populations predisposed to this condition.

Recent Findings

The current literature reveals a potential predisposition for CCS in the black population when compared to the white population; however, many studies do not report race when discussing CCS patients. The lack of data limits a consensus on specific populations with a congenitally narrow canal.

Summary

CCS may be more prevalent in specific populations. With knowledge of populations more at risk for this condition, physicians and teams can be alert when evaluating players and young adults. Furthermore, this may provide insight into risk for symptoms with degenerative disease. These findings introduce an avenue for further research into CCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Atli K, Chakravarthy V, Khan AI, Moore D, Steinmetz MP, Mroz TE. Surgical outcomes in patients with congenital cervical spinal stenosis. World Neurosurg. 2020;141:e645–50. https://doi.org/10.1016/j.wneu.2020.05.252. Provides insight into surgical management for individuals with CCS.

    Article  PubMed  Google Scholar 

  2. •• Jenkins TJ, Mai HT, Burgmeier RJ, Savage JW, Patel AA, Hsu WK. The triangle model of congenital cervical stenosis. Spine. 2016;41(5):E242–7. https://doi.org/10.1097/brs.0000000000001227

    Article  PubMed  Google Scholar 

  3. Countee RW, Vijayanathan T. Congenital stenosis of the cervical spine: diagnosis and management. J Natl Med Assoc. 1979;71(3):257–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kato F, Yukawa Y, Suda K, Yamagata M, Ueta T. Normal morphology, age-related changes and abnormal findings of the cervical spine. Part II: magnetic resonance imaging of over 1,200 asymptomatic subjects. Eur Spine J. 2012;21(8):1499–507. https://doi.org/10.1007/s00586-012-2176-4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Murone I. The importance of the sagittal diameters of the cervical spinal canal in relation to spondylosis and myelopathy. J Bone Joint Surg Br. 1974;56(1):30–6.

    CAS  PubMed  Google Scholar 

  6. Eubanks JD, Belding J, Schnaser E, et al. Congenital stenosis and adjacent segment disease in the cervical spine. Orthopedics. 2013;36(10):e1251–5. https://doi.org/10.3928/01477447-20130920-15.

    Article  PubMed  Google Scholar 

  7. Payne EE, Spillane JD. The cervical spine; an anatomico-pathological study of 70 specimens (using a special technique) with particular reference to the problem of cervical spondylosis. Brain. 1957;80(4):571–96. https://doi.org/10.1093/brain/80.4.571.

    Article  CAS  PubMed  Google Scholar 

  8. Maroon JC. ‘Burning hands’ in football spinal cord injuries. JAMA. 1977;238(19):2049–51.

    Article  CAS  PubMed  Google Scholar 

  9. Wilberger JE, Abla A, Maroon JC. Burning hands syndrome revisited. Neurosurgery. 1986;19(6):1038–40. https://doi.org/10.1227/00006123-198612000-00025.

    Article  CAS  PubMed  Google Scholar 

  10. Torg JS, Guille JT, Jaffe S. Injuries to the cervical spine in American football players. J Bone Joint Surg Am. 2002;84(1):112–22. https://doi.org/10.2106/00004623-200201000-00017.

    Article  PubMed  Google Scholar 

  11. Brigham CD, Adamson TE. Permanent partial cervical spinal cord injury in a professional football player who had only congenital stenosis. A case report. J Bone Joint Surg Am. 2003;85(8):1553–6. https://doi.org/10.2106/00004623-200308000-00018.

    Article  PubMed  Google Scholar 

  12. Torg JS, Ramsey-Emrhein JA. Management guidelines for participation in collision activities with congenital, developmental, or postinjury lesions involving the cervical spine. Clin J Sport Med. 1997;7(4):273–91. https://doi.org/10.1097/00042752-199710000-00005.

    Article  CAS  PubMed  Google Scholar 

  13. Rihn JA, Anderson DT, Lamb K, et al. Cervical spine injuries in American football. Sports Med. 2009;39(9):697–708. https://doi.org/10.2165/11315190-000000000-00000.

    Article  PubMed  Google Scholar 

  14. Inoue H, Ohmori K, Takatsu T, Teramoto T, Ishida Y, Suzuki K. Morphological analysis of the cervical spinal canal, dural tube and spinal cord in normal individuals using CT myelography. Neuroradiology. 1996;38(2):148–51. https://doi.org/10.1007/bf00604802.

    Article  CAS  PubMed  Google Scholar 

  15. Nouri A, Tetreault L, Nori S, Martin AR, Nater A, Fehlings MG. Congenital cervical spine stenosis in a multicenter global cohort of patients with degenerative cervical myelopathy: an ambispective report based on a magnetic resonance imaging diagnostic criterion. Neurosurgery. 2018;83(3):521–8. https://doi.org/10.1093/neuros/nyx521.

    Article  PubMed  Google Scholar 

  16. Lim JK, Wong HK. Variation of the cervical spinal Torg ratio with gender and ethnicity. Spine J. 2004;4(4):396–401. https://doi.org/10.1016/j.spinee.2003.11.011.

    Article  CAS  PubMed  Google Scholar 

  17. Nouri A, Montejo J, Sun X, et al. Cervical cord-canal mismatch: a new method for identifying predisposition to spinal cord injury. World Neurosurg. 2017;108:112–7. https://doi.org/10.1016/j.wneu.2017.08.018.

    Article  PubMed  Google Scholar 

  18. Yu M, Tang Y, Liu Z, Sun Y, Liu X. The morphological and clinical significance of developmental cervical stenosis. Eur Spine J. 2015;24(8):1583–9. https://doi.org/10.1007/s00586-015-3896-z.

    Article  PubMed  Google Scholar 

  19. Lord EL, Alobaidan R, Takahashi S, et al. Kinetic magnetic resonance imaging of the cervical spine: a review of the literature. Global Spine J. 2014;4(2):121–8. https://doi.org/10.1055/s-0034-1375563.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sayıt E, Aghdasi B, Daubs MD, Wang JC. The occupancy of the components in the cervical spine and their changes with extension and flexion. Global Spine J. 2015;5(5):396–405. https://doi.org/10.1055/s-0035-1550089.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kasai Y, Paholpak P, Wisanuyotin T, et al. Incidence and skeletal features of developmental cervical and lumbar spinal stenosis. Asian Spine J. 2022. https://doi.org/10.31616/asj.2022.0015.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee MJ, Cassinelli EH, Riew KD. Prevalence of cervical spine stenosis. Anatomic study in cadavers. J Bone Joint Surg Am. 2007;89(2):376–80. https://doi.org/10.2106/jbjs.F.00437.

    Article  PubMed  Google Scholar 

  23. Ishikawa M, Matsumoto M, Fujimura Y, Chiba K, Toyama Y. Changes of cervical spinal cord and cervical spinal canal with age in asymptomatic subjects. Spinal Cord. 2003;41(3):159–63. https://doi.org/10.1038/sj.sc.3101375.

    Article  CAS  PubMed  Google Scholar 

  24. Nouri A, Martin AR, Tetreault L, et al. MRI analysis of the combined prospectively collected AOSpine North America and International Data: the prevalence and spectrum of pathologies in a global cohort of patients with degenerative cervical myelopathy. Spine. 2017;42(14):1058–67. https://doi.org/10.1097/brs.0000000000001981.

    Article  PubMed  Google Scholar 

  25. Matveeva N, Janevski P, Nakeva N, Zhivadinovik J, Dodevski A. Morphometric analysis of the cervical spinal canal on MRI. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2013;34(2):97–103.

    PubMed  Google Scholar 

  26. Presciutti SM, DeLuca P, Marchetto P, Wilsey JT, Shaffrey C, Vaccaro AR. Mean subaxial space available for the cord index as a novel method of measuring cervical spine geometry to predict the chronic stinger syndrome in American football players. J Neurosurg Spine. 2009;11(3):264–71. https://doi.org/10.3171/2009.3.Spine08642.

    Article  PubMed  Google Scholar 

  27. Tierney RT, Maldjian C, Mattacola CG, Straub SJ, Sitler MR. Cervical spine stenosis measures in normal subjects. J Athl Train. 2002;37(2):190–3.

    PubMed  PubMed Central  Google Scholar 

  28. Ndubuisi CA, Mezue WC, Ohaegbulam SC. Space available for the cervical spinal cord of asymptomatic adult Nigerians. Korean J Spine. 2017;14(3):61–5. https://doi.org/10.14245/kjs.2017.14.3.61.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taitz C. Osteophytosis of the cervical spine in South African blacks and whites. Clin Anat. 1999;12(2):103–9. https://doi.org/10.1002/(sici)1098-2353(1999)12:2%3c103::Aid-ca4%3e3.0.Co;2-6.

    Article  CAS  PubMed  Google Scholar 

  30. Ezra D, Slon V, Kedar E, et al. The torg ratio of C3–C7 in African Americans and European Americans: A skeletal study. Clin Anat. 2019;32(1):84–9. https://doi.org/10.1002/ca.23269.

    Article  PubMed  Google Scholar 

  31. Miyazaki M, Takita C, Yoshiiwa T, Itonaga I, Tsumura H. Morphological analysis of the cervical pedicles, lateral masses, and laminae in developmental canal stenosis. Spine. 2010;35(24):E1381-5. https://doi.org/10.1097/BRS.0b013e3181e8958f.

    Article  PubMed  Google Scholar 

  32. Shah S, Dalvie S, Rai RR. Congenital malformed posterior arch of atlas with fusion defect: a case of developmental canal stenosis causing cervical myelopathy. J Spine Surg. 2017;3(3):489–97. https://doi.org/10.21037/jss.2017.08.04.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hsu YH, Huang WC, Liou KD, Shih YH, Lee LS, Cheng H. Cervical spinal stenosis and myelopathy due to atlas hypoplasia. J Chin Med Assoc. 2007;70(8):339–44. https://doi.org/10.1016/s1726-4901(08)70015-7.

    Article  PubMed  Google Scholar 

  34. Morishita Y, Naito M, Hymanson H, Miyazaki M, Wu G, Wang JC. The relationship between the cervical spinal canal diameter and the pathological changes in the cervical spine. Eur Spine J. 2009;18(6):877–83. https://doi.org/10.1007/s00586-009-0968-y.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Davies BM, Mowforth OD, Smith EK, Kotter MR. Degenerative cervical myelopathy. Bmj. 2018;360:186. https://doi.org/10.1136/bmj.k186.

    Article  Google Scholar 

  36. Morishita Y, Naito M, Wang JC. Cervical spinal canal stenosis: the differences between stenosis at the lower cervical and multiple segment levels. Int Orthop. 2011;35(10):1517–22. https://doi.org/10.1007/s00264-010-1169-3.

    Article  PubMed  Google Scholar 

  37. Epstein JA, Carras R, Hyman RA, Costa S. Cervical myelopathy caused by developmental stenosis of the spinal canal. J Neurosurg. 1979;51(3):362–7. https://doi.org/10.3171/jns.1979.51.3.0362.

    Article  CAS  PubMed  Google Scholar 

  38. Edwards WC, LaRocca H. The developmental segmental sagittal diameter of the cervical spinal canal in patients with cervical spondylosis. Spine. 1983;8(1):20–7. https://doi.org/10.1097/00007632-198301000-00003.

    Article  CAS  PubMed  Google Scholar 

  39. Lins CF, de Carvalho TL, de Moraes Carneiro ER, et al. MRI findings of the cervical spine in patients with mucopolysaccharidosis type VI: relationship with neurological physical examination. Clin Radiol. 2020;75(6):441–7. https://doi.org/10.1016/j.crad.2020.01.007.

    Article  PubMed  Google Scholar 

  40. Epstein NE, Epstein JA, Zilkha A. Traumatic myelopathy in a seventeen-year-old child with cervical spinal stenosis (without fracture or dislocation) and a C2–C3 Klippel-Feil fusion A case report. Spine. 1984;9(4):344–7. https://doi.org/10.1097/00007632-198405000-00003.

    Article  CAS  PubMed  Google Scholar 

  41. Hecht JT, Bodensteiner JB, Butler IJ. Neurologic manifestations of achondroplasia. Handb Clin Neurol. 2014;119:551–63. https://doi.org/10.1016/b978-0-7020-4086-3.00036-9.

    Article  PubMed  Google Scholar 

  42. McKay SD, Al-Omari A, Tomlinson LA, Dormans JP. Review of cervical spine anomalies in genetic syndromes. Spine. 2012;37(5):E269-77. https://doi.org/10.1097/BRS.0b013e31823b3ded.

    Article  PubMed  Google Scholar 

  43. Frigon VA, Castro FP, Whitecloud TS, Roesch W. Isolated subaxial cervical spine stenosis in achondroplasia. Curr Surg. 2000;57(4):354–6. https://doi.org/10.1016/s0149-7944(00)00269-5.

    Article  CAS  PubMed  Google Scholar 

  44. Khalid K, Saifuddin A. Pictorial review: imaging of the spinal manifestations of achondroplasia. Br J Radiol. 2021;94(1123):20210223. https://doi.org/10.1259/bjr.20210223.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Costanzo R, Bonosi L, Porzio M, et al. Burden of surgical treatment for the management of cervical myelopathy in mucopolysaccharidoses: a systematic review. Brain Sci. 2022;13(1):48. https://doi.org/10.3390/brainsci13010048.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Menger RP, Rayi A, Notarianni C. Klippel Feil syndrome. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., 2023.

  47. Campbell RM Jr. Spine deformities in rare congenital syndromes: clinical issues. Spine. 2009;34(17):1815–27. https://doi.org/10.1097/BRS.0b013e3181ab64e9.

    Article  PubMed  Google Scholar 

  48. Singh A, Tetreault L, Fehlings MG, Fischer DJ, Skelly AC. Risk factors for development of cervical spondylotic myelopathy: results of a systematic review. Evid Based Spine Care J. 2012;3(3):35–42. https://doi.org/10.1055/s-0032-1327808.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Aebli N, Rüegg TB, Wicki AG, Petrou N, Krebs J. Predicting the risk and severity of acute spinal cord injury after a minor trauma to the cervical spine. Spine J. 2013;13(6):597–604. https://doi.org/10.1016/j.spinee.2013.02.006.

    Article  PubMed  Google Scholar 

  50. Grant TT, Puffer J. Cervical stenosis: a developmental anomaly with quadriparesis during football. Am J Sports Med. 1976;4(5):219–21. https://doi.org/10.1177/036354657600400505.

    Article  CAS  PubMed  Google Scholar 

  51. Stratford J. Congenital cervical spinal stenosis: a factor in myelopathy. Acta Neurochir. 1978;41(1–3):101–6. https://doi.org/10.1007/bf01809140.

    Article  CAS  PubMed  Google Scholar 

  52. Torg JS, Pavlov H, Genuario SE, et al. Neurapraxia of the cervical spinal cord with transient quadriplegia. J Bone Joint Surg Am. 1986;68(9):1354–70.

    Article  CAS  PubMed  Google Scholar 

  53. Jabola R, Boswell B, Lutz RH, Casey J, Ceraulo A. Transient quadriplegia: a case-based approach to cervical trauma. Clin Pract Cases Emerg Med. 2021;5(2):163–6. https://doi.org/10.5811/cpcem.2020.12.49364.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Summerfield SL. The relationship of developmental narrowing of the cervical spinal canal to reversible and irreversible injury of the cervical spinal cord in football players An epidemiological study. J Bone Joint Surg Am. 1998;80(10):1554–5.

    Article  CAS  PubMed  Google Scholar 

  55. Torg JS. Cervical spinal stenosis with cord neurapraxia and transient quadriplegia. Sports Med. 1995;20(6):429–34. https://doi.org/10.2165/00007256-199520060-00007.

    Article  CAS  PubMed  Google Scholar 

  56. Castro FP Jr. Stingers, cervical cord neurapraxia, and stenosis. Clin Sports Med. 2003;22(3):483–92. https://doi.org/10.1016/s0278-5919(02)00094-7.

    Article  PubMed  Google Scholar 

  57. • Casey JC, Lutz RH, Boswell BL, Ceraulo AS. Transient quadriplegia in a high school football player. Curr Sports Med Rep. 2021;20(5):246–9. https://doi.org/10.1249/jsr.0000000000000844. Discuss the unique presentation of transient quadriplegia in patients with CCS.

    Article  PubMed  Google Scholar 

  58. Yoshida M, Tamaki T, Kawakami M, Hayashi N, Ando M. Indication and clinical results of laminoplasty for cervical myelopathy caused by disc herniation with developmental canal stenosis. Spine. 1998;23(22):2391–7. https://doi.org/10.1097/00007632-199811150-00006.

    Article  CAS  PubMed  Google Scholar 

  59. Okada K, Shirasaki N, Hayashi H, Oka S, Hosoya T. Treatment of cervical spondylotic myelopathy by enlargement of the spinal canal anteriorly, followed by arthrodesis. J Bone Joint Surg Am. 1991;73(3):352–64.

    Article  CAS  PubMed  Google Scholar 

  60. Yonenobu K, Okada K, Fuji T, Fujiwara K, Yamashita K, Ono K. Causes of neurologic deterioration following surgical treatment of cervical myelopathy. Spine. 1986;11(8):818–23. https://doi.org/10.1097/00007632-198610000-00016.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang JT, Wang LF, Liu YJ, et al. Relationship between developmental canal stenosis and surgical results of anterior decompression and fusion in patients with cervical spondylotic myelopathy. BMC Musculoskelet Disord. 2015;16:267. https://doi.org/10.1186/s12891-015-0728-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Döhler JR, Kahn MR, Hughes SP. Instability of the cervical spine after anterior interbody fusion. A study on its incidence and clinical significance in 21 patients. Arch Orthop Trauma Surg. 1985;104(4):247–50. https://doi.org/10.1007/bf00450219.

    Article  PubMed  Google Scholar 

  63. Ross JS, Masaryk TJ, Modic MT. Postoperative cervical spine: MR assessment. J Comput Assist Tomogr. 1987;11(6):955–62. https://doi.org/10.1097/00004728-198711000-00006.

    Article  CAS  PubMed  Google Scholar 

  64. Kwok WCH, Wong CYY, Law JHW, et al. Risk factors for adjacent segment disease following anterior cervical discectomy and fusion with plate fixation: a systematic review and meta-analysis. J Bone Joint Surg Am. 2022;104(21):1915–45. https://doi.org/10.2106/jbjs.21.01494.

    Article  PubMed  Google Scholar 

  65. Broida SE, Murakami K, Abedi A, et al. Clinical risk factors associated with the development of adjacent segment disease in patients undergoing ACDF: a systematic review. Spine J. 2023;23(1):146–56. https://doi.org/10.1016/j.spinee.2022.08.011.

    Article  PubMed  Google Scholar 

  66. Hirabayashi K, Watanabe K, Wakano K, Suzuki N, Satomi K, Ishii Y. Expansive open-door laminoplasty for cervical spinal stenotic myelopathy. Spine. 1983;8(7):693–9. https://doi.org/10.1097/00007632-198310000-00003.

    Article  CAS  PubMed  Google Scholar 

  67. Sakaura H, Hosono N, Mukai Y, Iwasaki M, Yoshikawa H. Medium-term outcomes of C3–6 laminoplasty for cervical myelopathy: a prospective study with a minimum 5-year follow-up. Eur Spine J. 2011;20(6):928–33. https://doi.org/10.1007/s00586-011-1690-0.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Matsumoto M, Watanabe K, Hosogane N, et al. Impact of lamina closure on long-term outcomes of open-door laminoplasty in patients with cervical myelopathy: minimum 5-year follow-up study. Spine. 2012;37(15):1288–91. https://doi.org/10.1097/BRS.0b013e3182498434.

    Article  PubMed  Google Scholar 

  69. Iwasaki M, Ebara S, Miyamoto S, Wada E, Yonenobu K. Expansive laminoplasty for cervical radiculomyelopathy due to soft disc herniation. Spine. 1996;21(1):32–8. https://doi.org/10.1097/00007632-199601010-00008.

    Article  CAS  PubMed  Google Scholar 

  70. Wang S, Zhang J, Peng S, et al. Relationship between severity of disease and postoperative neurological recovery in patients with cervical spondylotic myelopathy combined with developmental spinal stenosis. Evid Based Complement Alternat Med. 2022;2022:9800993. https://doi.org/10.1155/2022/9800993.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Alyssa Goodwin – idea generation, manuscript research, writing, and preparation

Dr. Wellington Hsu – idea generation, manuscript editing.

Corresponding author

Correspondence to Alyssa M. Goodwin.

Ethics declarations

Conflict of Interest

Alyssa Goodwin – No conflicts; Dr. Wellington Hsu – Advisory board member of Stryker, Medtronic, Promimic, Surgalign.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodwin, A.M., Hsu, W.K. Congenital Cervical Stenosis: a Review of the Current Literature. Curr Rev Musculoskelet Med 16, 438–445 (2023). https://doi.org/10.1007/s12178-023-09857-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-023-09857-9

Keywords

Navigation