Skip to main content

Advertisement

Log in

Nutritional Assessment and Interventions in Elective Hip and Knee Arthroplasty: a Detailed Review and Guide to Management

  • Reverse Shoulder Arthroplasty (E Craig, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

8.5 to 50% of total joint arthroplasty (TJA) patients are reported to have preoperative malnutrition. The narrative review identifies the relationship between preoperative malnutrition for TJA patients and postoperative outcomes as well as the use of perioperative nutritional intervention to improve postoperative complications.

Recent Findings

Biochemical/laboratory, anthropometric, and clinical measures have been widely used to identify preoperative nutritional deficiency. Specifically, serum albumin is the most prevalent used marker in TJA because it has been proven to be correlated with protein-energy malnutrition due to the surgical stress response. However, there remains a sustained incidence of preoperative malnutrition in total knee arthroplasty (TKA) and total hip arthroplasty (THA) patients due to a lack of agreement among the available nutritional screening tools and utilization of isolated laboratory, anthropometric, and clinical variables. Previous investigations have also suggested preoperative malnutrition to be a prognostic indicator of complications in general, cardiac, vascular, and orthopaedic surgery specialties.

Summary

Serum albumin, prealbumin, transferrin, and total lymphocyte count (TLC) can be used to identify at-risk patients. It is important to employ these markers in the preoperative setting because malnourished TKA and THA patients have shown to have worse postoperative outcomes including prolonged length, increased reoperation rates, increased infection rates, and increased mortality rates. Although benefits from high-protein and high-anti-inflammatory diets have been exhibited, additional research is needed to confirm the use of perioperative nutritional intervention as an appropriate treatment for preoperative TJA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable

Code Availability

Not applicable

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sayeed Z, Anoushiravani AA, Simha S, Padela MT, Schafer P, Awad ME, et al. Markers for malnutrition and BMI status in total joint arthroplasty and pharmaconutrient therapy [Internet]. JBJS Rev J Bone Jt Surg Inc. 2019;7(5):e3. [cited 2021 Mar 6]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/31094890/

    Google Scholar 

  2. White JV, Guenter P, Jensen G, Malone A, Schofield M. Consensus statement: Academy of nutrition and dietetics and American society for parenteral and enteral nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J Parenter Enter Nutr. 2012;36:275–83. [Internet]. SAGE Publications Inc.; [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/22535923/

    Google Scholar 

  3. Sauer AC, Goates S, Malone A, Mogensen KM, Gewirtz G, Sulz I, et al. Prevalence of malnutrition risk and the impact of nutrition risk on hospital outcomes: results from nutrition day in the U.S. J Parenter Enter Nutr. 2019;43:918–26. [Internet]. John Wiley and Sons Inc. [cited 2021 Mar 6] Available from: https://pubmed.ncbi.nlm.nih.gov/30666659/

    CAS  Google Scholar 

  4. Williams DGA, Molinger J, Wischmeyer PE. The malnourished surgery patient: a silent epidemic in perioperative outcomes? [Internet]. Curr Opin Anaesthesiol. 2019;32(3):405–11. Lippincott Williams and Wilkins; [cited 2021 Mar 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/30893119/. Highlights the use of serum albumin as a prognostic indicator of increased mortality and negative outcomes in multiple surgery specialties.

    PubMed  PubMed Central  Google Scholar 

  5. Gu A, Malahias MA, Strigelli V, Nocon AA, Sculco TP, Sculco PK. Preoperative malnutrition negatively correlates with postoperative wound complications and infection after total joint arthroplasty: a systematic review and meta-analysis [Internet]. J Arthroplast. 2019;34:1013–24. Churchill Livingstone Inc.; [cited 2021 Mar 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/30745081/

    Google Scholar 

  6. Yi PH, Frank RM, Vann E, Sonn KA, Moric M, Della Valle CJ. Is potential malnutrition associated with septic failure and acute infection after revision total joint arthroplasty? Clin Orthop Relat Res. 2015;473:175–82. [Internet]. Springer Science and Business Media, LLC; [cited 2021 Mar 8] Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/24867449/

    PubMed  Google Scholar 

  7. Ellsworth B, Kamath AF. Malnutrition and total joint arthroplasty. J Nat Sci. 2016;2:e179. [Internet]. NIH Public Access; [cited 2021 Mar 8]Available from: http://www.ncbi.nlm.nih.gov/pubmed/27376151

    PubMed  PubMed Central  Google Scholar 

  8. Weimann A, Braga M, Carli F, Higashiguchi T, Hübner M, Klek S, et al. ESPEN guideline: clinical nutrition in surgery. Clin Nutr. 2017;36:623–50. [Internet]. Churchill Livingstone; [cited 2021 Mar 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/28385477/

    PubMed  Google Scholar 

  9. Johnson NR, Statz JM, Odum SM, Otero JE. Failure to optimize before total knee arthroplasty: which modifiable risk factor is the most dangerous? J Arthroplasty (Churchill Livingstone). 2021;36(7):2452–7. Retrospective cohort study that shows the relationship between preoperative malnutrition in TKA patients and the development of postoperative complications.

    Google Scholar 

  10. Finnerty CC, Mabvuure NT, Kozar RA, Herndon DN. The surgically induced stress response. J Parenter Enter Nutr. 2013;37:21S–9S. [Internet]. John Wiley and Sons Inc.; [cited 2021 Mar 8]. Available from: /pmc/articles/PMC3920901/

    Google Scholar 

  11. Gillis C, Wischmeyer PE. Pre-operative nutrition and the elective surgical patient: why, how and what? [Internet]. Anaesthesia. 2019;74(Suppl 1):27–35. Blackwell Publishing Ltd; [cited 2021 Mar 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/30604414/

    PubMed  Google Scholar 

  12. White JV, Guenter P, Jensen G, Malone A, Schofield M. Consensus statement: Academy of nutrition and dietetics and American society for parenteral and enteral nutrition: Characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J Parenter Enter Nutr. 2012;36:275–83. [Internet]. SAGE Publications Inc.; [cited 2021 Mar 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/22535923/

    Google Scholar 

  13. Wischmeyer PE, Carli F, Evans DC, Guilbert S, Kozar R, Pryor A, et al. American Society for Enhanced recovery and perioperative quality initiative joint consensus statement on nutrition screening and therapy within a surgical enhanced recovery pathway [Internet]. Anesth Analg. 2018:1883–95. Lippincott Williams and Wilkins; [cited 2021 Mar 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/29369092/

  14. Zhang Z, Pereira SL, Luo M, Matheson EM. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: a systematic review and meta-analysis [Internet]. Nutrients. 2017;9(8):829. MDPI AG; [cited 2021 Mar 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/28771192/

    PubMed Central  Google Scholar 

  15. Skipper A, Ferguson M, Thompson K, Castellanos VH, Porcari J. Nutrition screening tools. J Parenter Enter Nutr. 2012;36:292–8. https://doi.org/10.1177/0148607111414023. [Internet]. John Wiley & Sons, Ltd; [cited 2021 Apr 1]

    Article  Google Scholar 

  16. Cortes R, Bennasar-Veny M, Castro-Sanchez E, Fresneda S, de Pedro-Gomez J, Yañez A. Nutrition screening tools for risk of malnutrition among hospitalized patients: a protocol for systematic review and meta analysis. Medicine (Baltimore). 2020;99:e22601. [Internet]. NLM (Medline); [cited 2021 Mar 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/33120747/. Outlines the current nutrition screening tools used to identify patients at-risk for malnutrition

    Google Scholar 

  17. Mujagic E, Marti WR, Coslovsky M, Zeindler J, Staubli S, Marti R, et al. The role of preoperative blood parameters to predict the risk of surgical site infection. Am J Surg. 2018;215:651–7. [Internet]. Elsevier Inc.; [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/28982517/

    PubMed  Google Scholar 

  18. Gibbs J, Cull W, Henderson W, Daley J, Hur K, Khuri SF. Preoperative serum albumin level as a predictor of operative mortality and morbidity: Results from the National VA Surgical Risk Study. Arch Surg. 1999;134:36–42. [Internet].; [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/9927128/

    CAS  PubMed  Google Scholar 

  19. Bath J, Smith JB, Woodard J, Kruse RL, Vogel TR. Complex relationship between low albumin level and poor outcome after lower extremity procedures for peripheral artery disease. J Vasc Surg. 2021;73:200–9. [Internet]. Mosby Inc.;[cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/32470524/

    PubMed  Google Scholar 

  20. Hennessey DB, Burke JP, Ni-Dhonochu T, Shields C, Winter DC, Mealy K. Preoperative hypoalbuminemia is an independent risk factor for the development of surgical site infection following gastrointestinal surgery: a multi-institutional study. Ann Surg. 2010;252:325–9. [Internet]. [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/20647925/

    PubMed  Google Scholar 

  21. Garg T, Chen LY, Kim PH, Zhao PT, Herr HW, Donat SM. Preoperative serum albumin is associated with mortality and complications after radical cystectomy. BJU Int. 2014;113:918–23. [Internet]. Blackwell Publishing Ltd; [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/24053616/

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhamidipati CM, Lapar DJ, Mehta GS, Kern JA, Upchurch GR, Kron IL, et al. Albumin is a better predictor of outcomes than body mass index following coronary artery bypass grafting. Surgery. 2011;150:626–34. [Internet]. [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/22000173/

    PubMed  Google Scholar 

  23. Rocha NP, Fortes RC. Total lymphocyte count and serum albumin as predictors of nutritional risk in surgical patients. Arq Bras Cir Dig. 2015;28:193–6. [Internet]. [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/26537145/

    PubMed  PubMed Central  Google Scholar 

  24. Ryan SP, Politzer C, Green C, Wellman S, Bolognesi M, Seyler T. Albumin versus American society of anesthesiologists score: which is more predictive of complications following total joint arthroplasty? Orthopedics [Internet]. Slack Incorporated. 2018;41:354–62. [cited 2021 Mar 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/30321441/

    Google Scholar 

  25. Bharadwaj S, Ginoya S, Tandon P, Gohel TD, Guirguis J, Vallabh H, et al. Malnutrition: laboratory markers vs nutritional assessment [Internet]. Gastroenterol Rep (Oxford). 2016;4:272–80. University Press; [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/27174435/

    Google Scholar 

  26. Keller U. Nutritional Laboratory Markers in Malnutrition. J Clin Med. 2019;8:775. [Internet]. MDPI AG; [cited 2021 Mar 9]. Available from: /pmc/articles/PMC6616535/

    CAS  PubMed Central  Google Scholar 

  27. Beck FK, Rosenthal TC. Prealbumin: a Marker for Nutritional Evaluation [Internet]. Am Fam Physician. 2002;65(8):1575–9. Available from: www.aafp.org/afpAMERICANFAMILYPHYSICIAN1575

    PubMed  Google Scholar 

  28. Knappe-Drzikova B, Maasberg S, Vonderbeck D, Krafft TA, Knüppel S, Sturm A, et al. Malnutrition predicts long-term survival in hospitalized patients with gastroenterological and hepatological diseases. Clin Nutr ESPEN. 2019;30:26–34. [Internet]. Elsevier Ltd; [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/30904226/

    PubMed  Google Scholar 

  29. Mears E. Outcomes of continuous process improvement of a nutritional care program incorporating serum prealbumin measurements. Nutrition. 1996;12:479–84. [Internet]. Elsevier Inc.; [cited 2021 Apr 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/8878138/

    CAS  PubMed  Google Scholar 

  30. Neyra NR, Hakim RM, Shyr Y, Ikizler TA. Serum transferrin and serum prealbumin are early predictors of serum albumin in chronic hemodialysis patients. J Ren Nutr. 2000;10:184–90. [Internet]. W.B. Saunders; [cited 2021 Apr 8]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/11070145/

    CAS  PubMed  Google Scholar 

  31. Shetty PS, Jung RT, Watrasiewicz KE, WPT J. Rapid-turnover transport proteins: an index of subclinical protein-energy malnutrition. Lancet. 1979;314:230–2. [Internet].; [cited 2021 Apr 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/89336/

    Google Scholar 

  32. Aparecida Leandro-Merhi V, Braga De Aquino JL, Sales Chagas JF. Nutrition status and risk factors associated with length of hospital stay for surgical patients. JPEN J Parenter Enteral Nutr. 2011;35:241–8. [Internet]. [cited 2021 Mar 9]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/20971940/

    Google Scholar 

  33. Girson R, Simadibrata M, Syam AF, Timan IS, Setiati S, Rani AA. Total lymphocyte count as a nutritional parameter in hospitalized patients. Indones J Gastroenterol Hepatol Dig Endosc. 2011;12(2):89-94 [Internet]. [cited 2021 Apr 3]. Available from: https://scholar.ui.ac.id/en/publications/total-lymphocyte-count-as-a-nutritional-parameter-in-hospitalized

  34. Nishida T, Sakakibara H. Association between underweight and low lymphocyte count as an indicator of malnutrition in Japanese women. J Women's Health. 2010;19:1377–83. https://doi.org/10.1089/jwh.2009.1857. [Internet]. Mary Ann Liebert, Inc. USA; [cited 2021 Apr 3]

    Article  Google Scholar 

  35. Bach V, Schruckmayer G, Sam I, Kemmler G, Stauder R. Prevalence and possible causes of anemia in the elderly: a cross-sectional analysis of a large European university hospital cohort. Clin Interv Aging. 2014;9:1187–96. [Internet]. Dove Medical Press Ltd.; [cited 2021 Apr 3]. Available from: /pmc/articles/PMC4113572/

    PubMed  PubMed Central  Google Scholar 

  36. Roche M, Law TY, Kurowicki J, Sodhi N, Rosas S, Elson L, et al. Albumin, prealbumin, and transferrin may be predictive of wound complications following total knee arthroplasty. J Knee Surg. 2018;31:946–51. [Internet]. Georg Thieme Verlag; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/30282102/

    PubMed  Google Scholar 

  37. Cross MB, Yi PH, Thomas CF, Garcia J, Della Valle CJ. Evaluation of malnutrition in orthopaedic surgery. J Am Acad Orthop Surg [Internet]. 2014;22:193–9. Lippincott Williams and Wilkins; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/24603829/

    Google Scholar 

  38. Bohl DD, Shen MR, Kayupov E, Della Valle CJ. Hypoalbuminemia independently predicts surgical site infection, pneumonia, length of stay, and readmission after total joint arthroplasty. J Arthroplast. Churchill Livingstone Inc. 2016;31:15–21.

    Google Scholar 

  39. Rainey Macdonald CG, Holliday RL, Wells GA, Donner AP. Validity of a two-variable nutritional index for use in selecting candidates for nutritional support. JPEN J Parenter Enteral Nutr. 1983;7:15–20. [Internet]. [cited 2021 Apr 4]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/6403728/

    CAS  PubMed  Google Scholar 

  40. Puskarich CL, Nelson CL, Nusbickel FR, Stroope HF. The use of two nutritional indicators in identifying long bone fracture patients who do and do not develop infections. J Orthop Res. 1990;8:799–803. [Internet]. [cited 2021 Apr 4]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/2213336/

    CAS  PubMed  Google Scholar 

  41. Hanada M, Hotta K, Matsuyama Y. Prognostic nutritional index as a risk factor for aseptic wound complications after total knee arthroplasty. J Orthop Sci. 2020; [Internet]. Elsevier; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/32883543/

  42. Casadei K, Kiel J. Anthropometric measurement [Updated 2020 Apr 28] [Internet]. StatPearls. StatPearls Publishing; 2020 [cited 2021 Mar 25]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537315/

  43. Madden AM, Smith S. Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet. 2016;29:7–25. [Internet]. Blackwell Publishing Ltd; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/25420774/

    CAS  PubMed  Google Scholar 

  44. Cederholm T, Bosaeus I, Barazzoni R, Bauer J, Van Gossum A, Klek S, et al. Diagnostic criteria for malnutrition - an ESPEN Consensus Statement. Clin Nutr. 2015;34:335–40. [Internet]. Churchill Livingstone; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/25799486/

    CAS  PubMed  Google Scholar 

  45. Kondrup J, Allison SP, Elia M, Vellas B, Plauth M. ESPEN guidelines for nutrition screening 2002. Clin Nutr. 2003;22:415–21. [Internet]. Churchill Livingstone; [cited 2021 Apr 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/12880610/

    CAS  PubMed  Google Scholar 

  46. Almasaudi AS, McSorley ST, Dolan RD, Edwards CA, McMillan DC. The relation between Malnutrition Universal Screening Tool (MUST), computed tomography-derived body composition, systemic inflammation, and clinical outcomes in patients undergoing surgery for colorectal cancer. Am J Clin Nutr. 2019;110:1327–34. [Internet]. Oxford University Press; [cited 2021 Apr 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/31529042/

    PubMed  Google Scholar 

  47. Barbosa AA d O, Vicentini AP, Langa FR. Comparison of NRS-2002 criteria with nutritional risk in hospitalized patients. Cienc Saude Colet. 2019;24:3325–34. [Internet]. Associacao Brasileira de Pos - Graduacao em Saude Coletiva; [cited 2021 Apr 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/31508753/

    Google Scholar 

  48. Portero-McLellan KC, Staudt C, Silva FRF, Bernardi JLD, Frenhani PB, Mehri VAL. The use of calf circumference measurement as an anthropometric tool to monitor nutritional status in elderly inpatients. J Nutr Health Aging. 2010;14:266–70. [Internet]. Serdi Publishing Company; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/20305992/

    CAS  PubMed  Google Scholar 

  49. Tsai AC, Chang TL, Wang JY. Short-form Mini-Nutritional Assessment with either BMI or calf circumference is effective in rating the nutritional status of elderly Taiwanese-Results of a national cohort study. Br J Nutr. 2013;110:1126–32. [Internet]. [cited 2021 Apr 3]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/23432907/

    CAS  PubMed  Google Scholar 

  50. Fiorentino M, Sophonneary P, Laillou A, Whitney S, De Groot R, Perignon M, et al. Current MUAC cut-offs to screen for acute malnutrition need to be adapted to gender and age: The example of Cambodia. PLoS One. 2016;11:e0146442. [Internet]. Public Library of Science; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/26840899/

    PubMed  PubMed Central  Google Scholar 

  51. Maalouf-Manasseh Z, Remancus S, Milner E, Fenlason L, Quick T, Patsche CB, et al. Global mid-upper arm circumference cut-offs for adults: a call to action [Internet]. Public Health Nutr. 2020;23(17):3114–5. Cambridge University Press; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/32844737/

    PubMed  Google Scholar 

  52. Gottschall C, Tarnowski M, Machado P, Raupp D, Marcadenti A, Rabito EI, et al. Predictive and concurrent validity of the Malnutrition Universal Screening Tool using mid-upper arm circumference instead of body mass index. J Hum Nutr Diet. 2019;32:775–80. [Internet]. Blackwell Publishing Ltd; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/31067603/

    CAS  PubMed  Google Scholar 

  53. Agrelli TF, Borges MDC, Da Cunha FMR, Da Silva ÉMC, Terra Júnior JA, Crema E. Combination of preoperative pulmonary and nutritional preparation for esophagectomy. Acta Cir Bras. 2018;33:67–74. [Internet]. Sociedade Brasileira para o Desenvolvimento de Pesquisa em Cirurgia; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/29412234/

    PubMed  Google Scholar 

  54. Leal-Escobar G, Osuna-Padilla IA, Cano-Escobar B, Moguel-González B, Pérez-Grovas HA, Ruiz-Ubaldo S. Phase angle and mid arm circumference as predictors of protein energy wasting in renal replacement therapy patients. Nutr Hosp. 2019;36:633–9. [Internet]. ARAN Ediciones S.A.; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/31192685/

    CAS  PubMed  Google Scholar 

  55. Lee B, Han HS, Yoon YS, Cho JY, Lee JS. Impact of preoperative malnutrition, based on albumin level and body mass index, on operative outcomes in patients with pancreatic head cancer. J Hepatobiliary Pancreat Sci. 2020;28(12):1069–75. [Internet]. Blackwell Publishing Asia; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/33128839/

    PubMed  Google Scholar 

  56. Kim JM, Park JH, Jeong SH, Lee YJ, Ju YT, Jeong CY, et al. Relationship between low body mass index and morbidity after gastrectomy for gastric cancer. Ann Surg Treat Res. 2016;90:207–12. [Internet]. Korean Surgical Society; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/27073791/

    PubMed  PubMed Central  Google Scholar 

  57. Kim E, Kang JS, Han Y, Kim H, Kwon W, Kim JR, et al. Influence of preoperative nutritional status on clinical outcomes after pancreatoduodenectomy. HPB. 2018;20:1051–61. [Internet]. Elsevier B.V.; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/29887259/

    PubMed  Google Scholar 

  58. Vellas B, Guigoz Y, Garry PJ, Nourhashemi F, Bennahum D, Lauque S, et al. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition. 1999;15:116–22. [Internet]. [cited 2021 Apr 4]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/9990575/

    CAS  PubMed  Google Scholar 

  59. Helminen H, Luukkaala T, Saarnio J, Nuotio M. Comparison of the Mini-Nutritional Assessment short and long form and serum albumin as prognostic indicators of hip fracture outcomes. Injury. 2017;48:903–8. [Internet]. Elsevier Ltd; [cited 2021 Apr 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/28249678/

    PubMed  Google Scholar 

  60. Li S, Zhang J, Zheng H, Wang X, Liu Z, Sun T. Prognostic role of serum albumin, total lymphocyte count, and Mini Nutritional Assessment on outcomes after geriatric hip fracture surgery: a meta-analysis and systematic review [Internet]. J Arthroplast. 2019;34(6):1287–96. Churchill Livingstone Inc.; [cited 2021 Apr 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/30852065/. This study shows the integral role of biochemical/laboratory values such as serum albumin as well as nutrition screening assessments such as MNA in identifying preoperative malnutrition

    Google Scholar 

  61. Guo JJ, Yang H, Qian H, Huang L, Guo Z, Tang T. The effects of different nutritional measurements on delayed wound healing after hip fracture in the elderly. J Surg Res. 2010;159:503–8. [Internet]. [cited 2021 Apr 4]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/19181343/

    CAS  PubMed  Google Scholar 

  62. Barbosa-Silva MCG, Barros AJD. Indications and limitations of the use of subjective global assessment in clinical practice: An update [Internet]. Curr Opin Clin Nutr Metab Care. 2006;9(3):263–9. [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/16607126/

    PubMed  Google Scholar 

  63. Bailey RL, West KP, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66:22–33. [Internet]. S. Karger AG; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/26045325/

    CAS  PubMed  Google Scholar 

  64. Secker DJ, Jeejeebhoy KN. Subjective global nutritional assessment for children. Am J Clin Nutr. 2007;85:1083–9. [Internet]. American Society for Nutrition; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/17413109/

    CAS  PubMed  Google Scholar 

  65. Detsky AS, Mclaughlin J, Baker JP, Johnston N, Whittaker S, Mendelson RA, et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987;11:8–13. [Internet]. [cited 2021 Apr 4]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/3820522/

    CAS  PubMed  Google Scholar 

  66. Prasad N, Sinha A. Subjective global assessment (SGA) of malnutrition. Handb Famine, Starvation, Nutr Deprivation From Biol to Policy [Internet]. Springer International Publishing; [cited 2021 Apr 14]. 2019;643–63. Available from: https://link.springer.com/referenceworkentry/10.1007/978-3-319-55387-0_116

  67. Eminovic S, Vincze G, Eglseer D, Riedl R, Sadoghi P, Leithner A, et al. Malnutrition as predictor of poor outcome after total hip arthroplasty. Int Orthop. 2021;45:51–6. [Internet]. Springer Science and Business Media Deutschland GmbH; [cited 2021 Mar 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/33244636/. Highlights the use of other laboratory markers such as TLC for measuring the impact of preoperative malnutrition on worse postoperative outcomes

    PubMed  Google Scholar 

  68. Nelson CL, Elkassabany NM, Kamath AF, Liu J. Low albumin levels, more than morbid obesity, are associated with complications after TKA. Clin Orthop Relat Res. 2015;473:3163–72. [Internet]. Springer New York LLC; [cited 2021 Mar 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/25995174/

    PubMed  PubMed Central  Google Scholar 

  69. Kishawi D, Schwarzman G, Mejia A, Hussain AK, Gonzalez MH. Low preoperative albumin levels predict adverse outcomes after total joint arthroplasty. J Bone Joint Surg Am. 2020;102:889–95. [Internet]. NLM (Medline); [cited 2021 Mar 15]. Available from: https://pubmed.ncbi.nlm.nih.gov/32079884/

    PubMed  Google Scholar 

  70. Black CS, Goltz DE, Ryan SP, Fletcher AN, Wellman SS, Bolognesi MP, et al. The role of malnutrition in ninety-day outcomes after total joint arthroplasty. J Arthroplast. 2019;34:2594–600. [Internet]. Churchill Livingstone Inc.; [cited 2021 Mar 12]. Available from: https://pubmed.ncbi.nlm.nih.gov/31239176/. Study identifying the correlation between hypoalbuminemia in TKA/THA patients and prolonged LOS as well as increased readmission, ED visit and SNF/rehab discharge rates

    Google Scholar 

  71. Newman JM, Sodhi N, Khlopas A, Piuzzi NS, Yakubek GA, Sultan AA, et al. Malnutrition increases the 30-day complication and re-operation rates in hip fracture patients treated with total hip arthroplasty. HIP Int. 2020;30:635–40. [Internet]. SAGE Publications Ltd; [cited 2021 Mar 10]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/31304789/

    PubMed  Google Scholar 

  72. Bally MR, Yildirim PZB, Bounoure L, Gloy VL, Mueller B, Briel M, et al. Nutritional support and outcomes in malnourished medical inpatients a systematic review and meta-analysis. JAMA Intern Med. 2016;176:43–53. [Internet]. American Medical Association; [cited 2021 Mar 12]. Available from: https://pubmed.ncbi.nlm.nih.gov/26720894/

    PubMed  Google Scholar 

  73. Feinberg J, Nielsen EE, Korang SK, Halberg Engell K, Nielsen MS, Zhang K, et al. Nutrition support in hospitalised adults at nutritional risk [Internet]. Cochrane Database Syst Rev. 2017;5(5):CD011598. John Wiley and Sons Ltd; [cited 2021 Mar 12]. Available from: https://pubmed.ncbi.nlm.nih.gov/28524930/

    PubMed  Google Scholar 

  74. Gomes F, Baumgartner A, Bounoure L, Bally M, Deutz NE, Greenwald JL, et al. Association of nutritional support with clinical outcomes among medical inpatients who are malnourished or at nutritional risk: an updated systematic review and meta-analysis. JAMA Netw Open. 2019;2:e1915138. [Internet]. NLM (Medline); [cited 2021 Apr 15]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/31747030/

    PubMed  PubMed Central  Google Scholar 

  75. Kaegi-Braun N, Mueller M, Schuetz P, Mueller B, Kutz A. Evaluation of nutritional support and in-hospital mortality in patients with malnutrition. JAMA Netw Open. 2021;4:e2033433. [Internet]. NLM (Medline); [cited 2021 Mar 12]. Available from: https://jamanetwork.com/. Population-based cohort study showing an association between nutritional support and a reduction in all-cause inpatient mortality rate and 30-day readmission rates

    PubMed  PubMed Central  Google Scholar 

  76. Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, et al. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: A randomized clinical trial. Clin Nutr. 2016;35:18–26. [Internet]. Churchill Livingstone; [cited 2021 Mar 12]. Available from: https://pubmed.ncbi.nlm.nih.gov/26797412/

    PubMed  Google Scholar 

  77. Jie B, Jiang ZM, Nolan MT, Zhu SN, Yu K, Kondrup J. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition. 2012;28:1022–7. [Internet]. [cited 2021 Mar 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/22673593/

    PubMed  Google Scholar 

  78. Alito MA, De Aguilar-Nascimento JE. Multimodal perioperative care plus immunonutrition versus traditional care in total hip arthroplasty: a randomized pilot study. Nutr J. 2016;15:34. [Internet]. BioMed Central Ltd.; [cited 2021 Mar 16]. Available from: /pmc/articles/PMC4818928/

    PubMed  PubMed Central  Google Scholar 

  79. Botella-Carretero JI, Iglesias B, Balsa JA, Arrieta F, Zamarrón I, Vázquez C. Perioperative oral nutritional supplements in normally or mildly undernourished geriatric patients submitted to surgery for hip fracture: a randomized clinical trial. Clin Nutr. 2010;29:574–9. [Internet]. [cited 2021 Mar 15]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/20199828/

    CAS  PubMed  Google Scholar 

  80. Harsten A, Hjartarson H, Toksvig-Larsen S. Total hip arthroplasty and perioperative oral carbohydrate treatment: a randomised, double-blind, controlled trial. Eur J Anaesthesiol. 2012;29:271–4. [Internet]. [cited 2021 Mar 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/22450530/

    CAS  PubMed  Google Scholar 

  81. Schroer WC, AR LM, Mills K, Childress AL, Morton DJ, Reedy ME. 2019 Chitranjan S. Ranawat Award: elective joint arthroplasty outcomes improve in malnourished patients with nutritional intervention: a prospective population analysis demonstrates a modifiable risk factor. Bone Jt J. 2019;101 B:17–21. [Internet]. British Editorial Society of Bone and Joint Surgery; [cited 2021 Mar 15].Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/31256648/. Longitudinal cohort study suggesting the use of a high protein, high anti-inflammatory diet to mitigate charges incurred by patients undergoing TKA or THA

    Google Scholar 

  82. Wilson JM, Schwartz AM, Farley KX, Bradbury TL, Guild GN. Combined malnutrition and frailty significantly increases complications and mortality in patients undergoing elective total hip arthroplasty. J Arthroplast. 2020;35:2488–94. [Internet]. Churchill Livingstone Inc.; [cited 2021 Mar 15]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/32444236/

    Google Scholar 

  83. Schwartz AM, Wilson JM, Farley KX, Bradbury TL, Guild GN. Concomitant malnutrition and frailty are uncommon, but significant risk factors for mortality and complication following primary total knee arthroplasty. J Arthroplast. 2020;35:2878–85. [Internet]. Churchill Livingstone Inc.; [cited 2021 Feb 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/32576431/. Outlines the relationship between malnutrition and frailty through a prospective cohort study. This study shows there are other factors that interplay with preoperative malnutrition

    Google Scholar 

  84. Runner RP, Bellamy JL, Vu CPCL, Erens GA, Schenker ML, Guild GN. Modified frailty index is an effective risk assessment tool in primary total knee arthroplasty. J Arthroplast. 2017;32:S177–82. [Internet]. Churchill Livingstone Inc.; [cited 2021 Apr 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/28442185/

    Google Scholar 

  85. Theiss MM, Ellison MW, Tea CG. The connection between strong social support and joint replacement outcomes. Orthopedics. 2011;34:357. [Internet]. [cited 2021 Feb 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/21598893/

    PubMed  Google Scholar 

  86. Sveikata T, Porvaneckas N, Kanopa P, Molyte A, Klimas D, Uvarovas V, et al. Age, sex, body mass index, education, and social support influence functional results after total knee arthroplasty. Geriatr Orthop Surg Rehabil. 2017;8:71–7. [Internet]. SAGE Publications; [cited 2021 Mar 20]. Available from: /pmc/articles/PMC5431407/

    PubMed  PubMed Central  Google Scholar 

  87. Lopez-Olivo MA, Ingleshwar A, Landon GC, Siff SJ, Barbo A, Lin HY, et al. Psychosocial determinants of total knee arthroplasty outcomes two years after surgery. ACR Open Rheumatol. 2020;2:573–81. [Internet]. Wiley; [cited 2021 Mar 20]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/32969193/

    PubMed  PubMed Central  Google Scholar 

  88. Matharu GS, Mouchti S, Twigg S, Delmestri A, Murray DW, Judge A, et al. The effect of smoking on outcomes following primary total hip and knee arthroplasty: a population-based cohort study of 117,024 patients. Acta Orthop. 2019;90:559–67. [Internet]. Taylor and Francis Ltd; [cited 2021 Mar 20]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/31370730/

    PubMed  PubMed Central  Google Scholar 

  89. Sahota S, Lovecchio F, Harold RE, Beal MD, Manning DW. The effect of smoking on thirty-day postoperative complications after total joint arthroplasty: a propensity score-matched analysis. J Arthroplast. 2018;33:30–5. [Internet]. Churchill Livingstone Inc.; [cited 2021 Mar 22]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/28870742/

    Google Scholar 

  90. Duchman KR, Gao Y, Pugely AJ, Martin CT, Noiseux NO, Callaghan JJ. The effect of smoking on short-term complications following total hip and knee arthroplasty. J Bone Jt Surg - Am. 2014;97:1049–58. [Internet]. Lippincott Williams and Wilkins; [cited 2021 Mar 22]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/26135071/

    Google Scholar 

  91. Weick J, Bawa H, Dirschl DR, Luu HH. Preoperative opioid use is associated with higher readmission and revision rates in total knee and total hip arthroplasty. J Bone Jt Surg - Am. 2018;100:1171–6. [Internet]. Lippincott Williams and Wilkins; [cited 2021 Mar 22]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/30020122/

    Google Scholar 

  92. Jain N, Brock JL, Malik AT, Phillips FM, Khan SN. Prediction of complications, readmission, and revision surgery based on duration of preoperative opioid use: analysis of major joint replacement and lumbar fusion. J Bone Jt Surg - Am. 2019;101:384–91. [Internet]. Lippincott Williams and Wilkins; [cited 2021 Mar 22]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/30845032/

    Google Scholar 

  93. Shadbolt C, Schilling C, Inacio MC, Abbott JH, Pryymachenko Y, Wilson R, et al. Opioid Use and Total Joint Replacement [Internet]. Curr Rheumatol Rep. 2020;22(10):58. Springer; [cited 2021 Mar 22]. Available from: https://pubmed-ncbi-nlm-nih-gov.neomed.idm.oclc.org/32808102/

    PubMed  Google Scholar 

  94. Shohat N, Muhsen K, Gilat R, Rondon AJ, Chen AF, Parvizi J. Inadequate glycemic control is associated with increased surgical site infection in total joint arthroplasty: a systematic review and meta-analysis [Internet]. J Arthroplast. 2018:2312–2321.e3. Churchill Livingstone Inc.; [cited 2021 Mar 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/29605149/

  95. Yang Z, Liu H, Xie X, Tan Z, Qin T, Kang P. The influence of diabetes mellitus on the post-operative outcome of elective primary total knee replacement: a systematic review and meta-analysis. Bone Jt J. 2014;96B:1637–43. [Internet]. British Editorial Society of Bone and Joint Surgery; [cited 2021 Mar 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/25452366/

    Google Scholar 

  96. Adams AL, Paxton EW, Wang JQ, Johnson ES, Bayliss EA, Ferrara A, et al. Surgical outcomes of total knee replacement according to diabetes status and glycemic control, 2001 to 2009. J Bone Jt Surg - Ser A. 2013;95:481–7. [Internet]. Journal of Bone and Joint Surgery Inc.; [cited 2021 Mar 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/23446446/

    Google Scholar 

  97. Siddiqi A, Warren JA, McLaughlin J, Kamath AF, Krebs VE, Molloy RM, et al. Demographic, comorbidity, and episode-of-care differences in primary total knee arthroplasty. J Bone Joint Surg Am. 2021;103:227–34. [Internet]. NLM (Medline); [cited 2021 Apr 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/33534292/

    PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization and idea for the article came from MH, MD and NSP, MD. The literature search and data analysis were performed by MDD, BS. The first draft of the manuscript was written by MDD, BS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicolas S. Piuzzi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Reverse Shoulder Arthroplasty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubé, M.D., Rothfusz, C.A., Emara, A.K. et al. Nutritional Assessment and Interventions in Elective Hip and Knee Arthroplasty: a Detailed Review and Guide to Management. Curr Rev Musculoskelet Med 15, 311–322 (2022). https://doi.org/10.1007/s12178-022-09762-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-022-09762-7

Keywords

Navigation