Skip to main content
  • Updates in Spine Surgery - Techniques, Biologics, and Non-Operative Management (W Hsu, Section Editor)
  • Published:

A Review of Treatment for Acute and Chronic Pars Fractures in the Lumbar Spine

Abstract

Purpose of Review

Spondylolysis remains one of the most common causes of lower back pain in the pediatric and adolescent populations and is particularly prevalent in young sporting individuals. Despite this, approaches to diagnostic imaging and both conservative and surgical treatment vary widely among surgeons. The current review investigates recent literature on the etiology, clinical presentation, diagnosis, and treatment of spondylolysis. In particular, it interrogates the use of various advanced imaging modalities (CT, MRI, SPECT) in diagnosis as well as common surgical approaches to the condition.

Recent Findings

Recent data has provided more information on how pars defect laterality, stage, and presence or absence of bone marrow edema impact healing potential. Other studies have highlighted the advantages of using MRI for spondylolysis diagnosis. Other data has provided more clarity on which adults may benefit from direct pars repair, while other studies have compared the various techniques for direct repair of pars defects.

Summary

While the exact cause of spondylolysis remains unclear, there is growing understanding of the behavioral, genetic, and biomechanical risk factors that predispose individuals to the condition. MRI may be emerging as the advanced imaging modality of choice for diagnosis due to its lack of radiation and comparable sensitivity to other advanced imaging techniques. Conservative treatment remains the first step in management due to excellent outcomes in most patients, with surgical intervention rarely necessary. In patients that do require surgery, direct repair using a pedicle screw-based approach is preferred over spinal fusion and other direct repair techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Not applicable

Code Availability

Not applicable

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hu SS, Tribus CB, Diab M, Ghanayem AJ. Spondylolisthesis and spondylolysis. Instr Course Lect. 2008;57:431–45.

    PubMed  Google Scholar 

  2. Standaert CJ, Herring SA, Halpern B, King O. Spondylolysis. Phys Med Rehabil Clin N Am. 2000;4(11):785–803.

    Article  Google Scholar 

  3. Miller R, Beck NA, Sampson NR, Zhu X, Flynn JM, Drummond D. Imaging modalities for low back pain in children: a review of spondyloysis and undiagnosed mechanical back pain. J Pediatr Orthop. 2013;3(33):282–8. https://doi.org/10.1097/BPO.0b013e318287fffb.

    Article  Google Scholar 

  4. Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylolysis and spondylolisthesis. J Bone Joint Surg Am. 1984;5(66):699–707.

    Article  Google Scholar 

  5. Lemoine T, Fournier J, Odent T, Sembély-Taveau C, Merenda P, Sirinelli D, Morel B. The prevalence of lumbar spondylolysis in young children: a retrospective analysis using CT. Eur Spine J. 2018;27(5):1067–72. https://doi.org/10.1007/s00586-017-5339-5.

    Article  PubMed  Google Scholar 

  6. Rossi F. Spondylolysis, spondylolisthesis and sports. J Sports Med Phys Fitness. 1978;4(18):317–40.

    Google Scholar 

  7. Wynne-Davies R, Scott JH. Inheritance and spondylolisthesis: a radiographic family survey. J Bone Joint Surg Br. 1979;3(61-b):301–5. https://doi.org/10.1302/0301-620x.61b3.383720.

    Article  Google Scholar 

  8. Micheli LJ, Wood R. Back pain in young athletes. Significant differences from adults in causes and patterns. Arch Pediatr Adolesc Med. 1995;149(1):15–8. https://doi.org/10.1001/archpedi.1995.02170130017004.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg NJ, Bargar WL, Friedman B. The incidence of spondylolysis and spondylolisthesis in nonambulatory patients. Spine (Phila Pa 1976). 1981;1(6):35–8. https://doi.org/10.1097/00007632-198101000-00005.

    Article  Google Scholar 

  10. Jackson DW, Wiltse LL, Cirincoine RJ. Spondylolysis in the female gymnast. Clin Orthop Relat Res. 1976;117:68–73.

    Google Scholar 

  11. Aggrawal ND, Kaur R, Kumar S, Mathur DN. A study of changes in the spine in weight lifters and other athletes. Br J Sports Med. 1979;2(13):58–61. https://doi.org/10.1136/bjsm.13.2.58.

    Article  Google Scholar 

  12. Ciullo JV, Jackson DW. Pars interarticularis stress reaction, spondylolysis, and spondylolisthesis in gymnasts. Clin Sports Med. 1985;1(4):95–110.

    Article  Google Scholar 

  13. Terai T, Sairyo K, Goel VK, Ebraheim N, Biyani A, Faizan A, Sakai T, Yasui N. Spondylolysis originates in the ventral aspect of the pars interarticularis: a clinical and biomechanical study. J Bone Joint Surg Br. 2010;8(92):1123–7. https://doi.org/10.1302/0301-620x.92b8.22883.

    Article  Google Scholar 

  14. Mansfield JT, Wroten M. Pars Interarticularis Defect. Treasure Island (FL): StatPearls; 2021. https://www.ncbi.nlm.nih.gov/pubmed/30855876. Accessed 20 Jun 2021.

  15. Cyron BM, Hutton WC. The fatigue strength of the lumbar neural arch in spondylolysis. J Bone Joint Surg Br. 1978;2(60-b):234–8. https://doi.org/10.1302/0301-620x.60b2.659472.

    Article  Google Scholar 

  16. Sterba M, Arnoux PJ, Labelle H, Warner WC, Aubin C. Biomechanical analysis of spino-pelvic postural configurations in spondylolysis subjected to various sport-related dynamic loading conditions. Eur Spine J. 2018;8(27):2044–52. https://doi.org/10.1007/s00586-018-5667-0.

    Article  Google Scholar 

  17. Sunami T, Kotani T, Aoki Y, Sakuma T, Nakayama K, Iijima Y, Akazawa T, Minami S, Ohtori S, Yamazaki M. Large lumbar lordosis is a risk factor for lumbar spondylolysis in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2021; https://doi.org/10.1097/brs.0000000000004192.

  18. Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, O'Brien M, Chopin D, Hresko T, Dimnet J. Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine (Phila Pa 1976). 2004;18(29):2049–54. https://doi.org/10.1097/01.brs.0000138279.53439.cc.

    Article  Google Scholar 

  19. Yin J, Peng BG, Li YC, Zhang NY, Yang L, Li DM. Differences of sagittal lumbosacral parameters between patients with lumbar spondylolysis and normal adults. Chin Med J (Engl). 2016;10(129):1166–70. https://doi.org/10.4103/0366-6999.181972.

    Article  Google Scholar 

  20. Logroscino G, Mazza O, Aulisa G, Pitta L, Pola E, Aulisa L. Spondylolysis and spondylolisthesis in the pediatric and adolescent population. Childs Nerv Syst. 2001;11(17):644–55. https://doi.org/10.1007/s003810100495.

    Article  Google Scholar 

  21. Haukipuro K, Keränen N, Koivisto E, Lindholm R, Norio R, Punto L. Familial occurrence of lumbar spondylolysis and spondylolisthesis. Clin Genet. 1978;6(13):471–6. https://doi.org/10.1111/j.1399-0004.1978.tb01200.x.

    Article  Google Scholar 

  22. Yamada A, Sairyo K, Shibuya I, Kato K, Dezawa A, Sakai T. Lumbar spondylolysis in juveniles from the same family: a report of three cases and a review of the literature. Case Rep Orthop. 2013;272514(2013) https://doi.org/10.1155/2013/272514.

  23. Kato K, Hakozaki M, Mashiko R, Konno SI. Familial development of lumbar spondylolysis: a familial case report of 7- and 4-year-old brothers and their father. J Int Med Res. 2021;5(49) https://doi.org/10.1177/03000605211015559.

  24. Cai T, Yang L, Cai W, Guo S, Yu P, Li J, Hu X, Yan M, Shao Q, Jin Y, Sun ZS, Luo ZJ. Dysplastic spondylolysis is caused by mutations in the diastrophic dysplasia sulfate transporter gene. Proc Natl Acad Sci U S A. 2015;112(26):8064–9. https://doi.org/10.1073/pnas.1502454112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakai T, Goda Y, Tezuka F, Takata Y, Higashino K, Sato M, Mase Y, Nagamachi A, Sairyo K. Characteristics of lumbar spondylolysis in elementary school age children. Eur Spine J. 2016;2(25):602–6. https://doi.org/10.1007/s00586-015-4029-4. Identifies the characteristic features of spondylolysis in elementary school age children

    Article  Google Scholar 

  26. Seitsalo S, Osterman K, Poussa M. Scoliosis associated with lumbar spondylolisthesis. A clinical survey of 190 young patients. Spine (Phila Pa 1976). 1988;8(13):899–904. https://doi.org/10.1097/00007632-198808000-00005.

    Article  Google Scholar 

  27. Fisk JR, Moe JH, Winter RB. Scoliosis, spondylolysis, and spondylolisthesis. Their relationship as reviewed in 539 patients. Spine (Phila Pa 1976). 1978;3(3):234–45.

    Article  CAS  Google Scholar 

  28. Tsukagoshi Y, Kamegaya M, Tatsumura M, Tomaru Y, Kamada H, Morita M, Saisu T, Nomura S, Ikezawa Y, Yamazaki M. Characteristics and diagnostic factors associated with fresh lumbar spondylolysis in elementary school-aged children. Eur Spine J. 2020;10(29):2465–9. https://doi.org/10.1007/s00586-020-06553-x.

    Article  Google Scholar 

  29. Morita T, Ikata T, Katoh S, Miyake R. Lumbar spondylolysis in children and adolescents. J Bone Joint Surg Br. 1995;4(77):620–5.

    Article  Google Scholar 

  30. Koichi Sairyo TS, Takata Y, Yamashita K, Tezuka F. Hiroaki Manabe. Spondylolysis and spondylolisthesis in athletes. In: Wellington K, Hsu TJJ, editors. Spinal Conditions in the Athlete. Springer; 2020. p. 235–47. https://doi.org/10.1007/978-3-030-26207-5_17.

    Chapter  Google Scholar 

  31. Sairyo K, Katoh S, Sasa T, Yasui N, Goel VK, Vadapalli S, Masuda A, Biyani A, Ebraheim N. Athletes with unilateral spondylolysis are at risk of stress fracture at the contralateral pedicle and pars interarticularis: a clinical and biomechanical study. Am J Sports Med. 2005;4(33):583–90. https://doi.org/10.1177/0363546504269035.

    Article  Google Scholar 

  32. Nakayama T, Ehara S. Spondylolytic spondylolisthesis: various imaging features and natural courses. Jpn J Radiol. 2015;1(33):3–12. https://doi.org/10.1007/s11604-014-0371-4.

    Article  Google Scholar 

  33. Aoki Y, Takahashi H, Nakajima A, Kubota G, Watanabe A, Nakajima T, Eguchi Y, Orita S, Fukuchi H, Yanagawa N, Nakagawa K, Ohtori S. Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease. Sci Rep. 2020;1(10):6739. https://doi.org/10.1038/s41598-020-63784-0. Examines the age-specific prevalence of spondylolysis and spondylolisthesis in patients without lower back pain, demonstrating a high prevalence of spondylolisthesis in patients over 60 years old with bilateral spondylolysis

    Article  CAS  Google Scholar 

  34. Beutler WJ, Fredrickson BE, Murtland A, Sweeney CA, Grant WD, Baker D. The natural history of spondylolysis and spondylolisthesis: 45-year follow-up evaluation. Spine (Phila Pa 1976). 2003;10(28):1027–35. https://doi.org/10.1097/01.Brs.0000061992.98108.A0.

  35. Toueg CW, Mac-Thiong JM, Grimard G, Parent S, Poitras B, Labelle H. Prevalence of spondylolisthesis in a population of gymnasts. Stud Health Technol Inform. 2010;(158):132–7.

  36. Kalichman L, Kim DH, Li L, Guermazi A, Berkin V, Hunter DJ. Spondylolysis and spondylolisthesis: prevalence and association with low back pain in the adult community-based population. Spine (Phila Pa 1976). 2009;2(34):199–205. https://doi.org/10.1097/BRS.0b013e31818edcfd.

    Article  Google Scholar 

  37. Floman Y. Progression of lumbosacral isthmic spondylolisthesis in adults. Spine (Phila Pa 1976). 2000;3(25):342–7. https://doi.org/10.1097/00007632-200002010-00014.

    Article  Google Scholar 

  38. Wáng YXJ, Deng M, Griffith JF, Kwok AWL, Leung JC, Ahuja AT, Kwok T, Leung PC. Lumbar spondylolisthesis progression and de novo spondylolisthesis in elderly Chinese men and women: a year-4 follow-up study. Spine (Phila Pa 1976). 2016;13(41):1096–103. https://doi.org/10.1097/brs.0000000000001507.

    Article  Google Scholar 

  39. Sakai T, Sairyo K, Takao S, Nishitani H, Yasui N. Incidence of lumbar spondylolysis in the general population in Japan based on multidetector computed tomography scans from two thousand subjects. Spine (Phila Pa 1976). 2009;34(21):2346–50. https://doi.org/10.1097/BRS.0b013e3181b4abbe.

    Article  Google Scholar 

  40. Merbs CF. Incomplete spondylolysis and healing. A study of ancient Canadian Eskimo skeletons. Spine (Phila Pa 1976). 1995;21(20):2328–34. https://doi.org/10.1097/00007632-199511000-00011.

    Article  Google Scholar 

  41. Rowe GG, Roche MB. The etiology of separate neural arch. J Bone Joint Surg Am. 1953;1(35-a):102–10.

    Article  Google Scholar 

  42. McCarroll JR, Miller JM, Ritter MA. Lumbar spondylolysis and spondylolisthesis in college football players. A prospective study. Am J Sports Med. 1986;5(14):404–6. https://doi.org/10.1177/036354658601400513.

    Article  Google Scholar 

  43. Jackson DW. Low back pain in young athletes: evaluation of stress reaction and discogenic problems. Am J Sports Med. 1979;6(7):364–6. https://doi.org/10.1177/036354657900700614.

    Article  Google Scholar 

  44. Stanitski C. Spondylolysis and spondylolisthesis in athletes. Oper Tech Sports Med. 2006;14:141–6.

    Article  Google Scholar 

  45. Maurer SG, Wright KE, Bendo JA. Iatrogenic spondylolysis leading to contralateral pedicular stress fracture and unstable spondylolisthesis: a case report. Spine (Phila Pa 1976). 2000;25(7):895–8. https://doi.org/10.1097/00007632-200004010-00022.

    Article  CAS  Google Scholar 

  46. König MA, Ebrahimi FV, Nitulescu A, Behrbalk E, Boszczyk BM. Early results of stand-alone anterior lumbar interbody fusion in iatrogenic spondylolisthesis patients. Eur Spine J. 2013;12(22):2876–83. https://doi.org/10.1007/s00586-013-2970-7.

    Article  Google Scholar 

  47. Suzuki K, Ishida Y, Ohmori K. Spondylolysis after posterior decompression of the lumbar spine. 35 patients followed for 3-9 years. Acta Orthop Scand. 1993;1(64):17–21. https://doi.org/10.3109/17453679308994519.

    Article  Google Scholar 

  48. Randall RM, Silverstein M, Goodwin R. Review of pediatric spondylolysis and spondylolisthesis. Sports Med Arthrosc Rev. 2016;24(4):184–7. https://doi.org/10.1097/jsa.0000000000000127.

    Article  PubMed  Google Scholar 

  49. Sairyo K, Katoh S, Takata Y, Terai T, Yasui N, Goel VK, Masuda A, Vadapalli S, Biyani A, Ebraheim N. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents: a clinical and biomechanical study. Spine (Phila Pa 1976). 2006;2(31):206–11. https://doi.org/10.1097/01.brs.0000195161.60549.67.

    Article  Google Scholar 

  50. Tezuka F, Sairyo K, Sakai T, Dezawa A. Etiology of adult-onset stress fracture in the lumbar spine. Clin Spine Surg. 2017;3(30):E233–e238. https://doi.org/10.1097/bsd.0000000000000162.

    Article  Google Scholar 

  51. Sutton JH, Guin PD, Theiss SM. Acute lumbar spondylolysis in intercollegiate athletes. J Spinal Disord Tech. 2012;8(25):422–5. https://doi.org/10.1097/BSD.0b013e318236ba6c.

    Article  Google Scholar 

  52. Plantz MA, Selverian S, Jenkins TJ, Watkins III RG, Watkins IV RG, Hecht AC, Hsu WK. Evidence-Based Management of Spinal Conditons in the Elite Athlete. In: Khanuja HS, Strauss EJ, editors. AAOS Instructonal Course Lectures, Volume 70. American Academy of Orthopaedic Surgeons; 2021. Chapter 20.

  53. Hirano A, Takebayashi T, Yoshimoto M, Ida K, Yamashita T, Nakano K Characteristics of clinical and imaging findings in adolescent lumbar spondylolysis associated with sports activities. J Spine. 2012;(1):124. https://doi.org/10.4172/2165-7939.1000124.

  54. Masci L, Pike J, Malara F, Phillips B, Bennell K, Brukner P. Use of the one-legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis. Br J Sports Med. 2006;11(40):940–6; discussion 946. https://doi.org/10.1136/bjsm.2006.030023.

    Article  Google Scholar 

  55. Alqarni AM, Schneiders AG, Cook CE, Hendrick PA. Clinical tests to diagnose lumbar spondylolysis and spondylolisthesis: a systematic review. Phys Ther Sport. 2015;3(16):268–75. https://doi.org/10.1016/j.ptsp.2014.12.005.

    Article  Google Scholar 

  56. Collaer JW, McKeough DM, Boissonnault WG. Lumbar isthmic spondylolisthesis detection with palpation: interrater reliability and concurrent criterion-related validity. J Man Manip Ther. 2006;1(14):22–9. https://doi.org/10.1179/106698106790820917.

    Article  Google Scholar 

  57. Beck NA, Miller R, Baldwin K, Zhu X, Spiegel D, Drummond D, Sankar WN, Flynn JM. Do oblique views add value in the diagnosis of spondylolysis in adolescents? J Bone Joint Surg Am. 2013;10(95):e65. https://doi.org/10.2106/jbjs.L.00824.

    Article  Google Scholar 

  58. Lim MR, Yoon SC, Green DW. Symptomatic spondylolysis: diagnosis and treatment. Curr Opin Pediatr. 2004;16(1):37–46. https://doi.org/10.1097/00008480-200402000-00008.

    Article  PubMed  Google Scholar 

  59. McCleary MD, Congeni JA. Current concepts in the diagnosis and treatment of spondylolysis in young athletes. Curr Sports Med Rep. 2007;6(1):62–6. https://doi.org/10.1007/s11932-007-0014-y.

    Article  PubMed  Google Scholar 

  60. Gould HP, Winkelman RD, Tanenbaum JE, Hu E, Haines CM, Hsu WK, Kalfas IH, Savage JW, Schickendantz MS, Mroz TE. Epidemiology, treatment, and performance-based outcomes in american professional baseball players with symptomatic spondylolysis and isthmic spondylolisthesis. Am J Sports Med. 2020;11(48):2765–73. https://doi.org/10.1177/0363546520945727.

    Article  Google Scholar 

  61. Rothman SL, Glenn WV Jr. CT multiplanar reconstruction in 253 cases of lumbar spondylolysis. AJNR Am J Neuroradiol. 1984;1(5):81–90.

    Google Scholar 

  62. Kobayashi A, Kobayashi T, Kato K, Higuchi H, Takagishi K. Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging. Am J Sports Med. 2013;1(41):169–76. https://doi.org/10.1177/0363546512464946.

    Article  Google Scholar 

  63. Campbell RS, Grainger AJ, Hide IG, Papastefanou S, Greenough CG. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI. Skeletal Radiol. 2005;2(34):63–73. https://doi.org/10.1007/s00256-004-0878-3. Assesses ability of MRI to detect adolescent spondylolysis compared to SPECT and MRI, stratified by pars defect staging. Suggests a protocol utilizing MRI as first-line examination in adolescents with LBP

    Article  Google Scholar 

  64. Leone A, Cianfoni A, Cerase A, Magarelli N, Bonomo L. Lumbar spondylolysis: a review. Skeletal Radiol. 2011;6(40):683–700. https://doi.org/10.1007/s00256-010-0942-0. Provides an in-depth review of common imaging techniques for spondylolysis including radiography CT, MRI and radionuclide imaging, providing support for MRI as first-line examination in suspected juvenile spondylolysis

    Article  Google Scholar 

  65. West AM, d'Hemecourt PA, Bono OJ, Micheli LJ, Sugimoto D. Diagnostic accuracy of magnetic resonance imaging and computed tomography scan in young athletes with spondylolysis. Clin Pediatr (Phila). 2019;6(58):671–6. https://doi.org/10.1177/0009922819832643.

    Article  Google Scholar 

  66. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;2(176):289–96. https://doi.org/10.2214/ajr.176.2.1760289.

    Article  Google Scholar 

  67. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;f2360(346) https://doi.org/10.1136/bmj.f2360.

  68. Fadell MF, Gralla J, Bercha I, Stewart JR, Harned RK, Ingram JD, Miller AL, Strain JD, Weinman JP. CT outperforms radiographs at a comparable radiation dose in the assessment for spondylolysis. Pediatr Radiol. 2015;45(7):1026–30. https://doi.org/10.1007/s00247-015-3278-z.

    Article  PubMed  Google Scholar 

  69. Saifuddin A, Burnett SJ. The value of lumbar spine MRI in the assessment of the pars interarticularis. Clin Radiol. 1997;9(52):666–71. https://doi.org/10.1016/s0009-9260(97)80029-3.

    Article  Google Scholar 

  70. Yamaguchi KT Jr, Skaggs DL, Acevedo DC, Myung KS, Choi P, Andras L. Spondylolysis is frequently missed by MRI in adolescents with back pain. J Child Orthop. 2012;3(6):237–40. https://doi.org/10.1007/s11832-012-0409-z.

    Article  Google Scholar 

  71. Rush JK, Astur N, Scott S, Kelly DM, Sawyer JR, Warner WC Jr. Use of magnetic resonance imaging in the evaluation of spondylolysis. J Pediatr Orthop. 2015;3(35):271–5. https://doi.org/10.1097/bpo.0000000000000244. Finds sensitivity of MRI for detection of spondylolysis to be comparable to that of CT and additionally identifies a patient population with positive MRI and negative CT who may benefit from early conservative treatment

    Article  Google Scholar 

  72. Hsu WK, Jenkins TJ. Management of lumbar conditions in the elite athlete. JAAOS - J Am Acad of Orthopaedic Surgeons. 2017;7(25):489–98. https://doi.org/10.5435/jaaos-d-16-00135.

    Article  Google Scholar 

  73. Dunn AJ, Campbell RS, Mayor PE, Rees D. Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis. Skeletal Radiol. 2008;5(37):443–50. https://doi.org/10.1007/s00256-008-0449-0.

    Article  Google Scholar 

  74. Andrew C, Hecht ARV, Hsu W, Watkins RG, Dossett A. Spine and sports: a roundtable discussion. In: Hecht AC, editor. Spine Injuries in Athletes. LWW; 2017. p. 278–84.

    Google Scholar 

  75. Schmitt F, Grosu D, Mohr C, Purdy D, Salem K, Scott KT, Stoeckel B. 3 Tesla MRI: successful results with higher field strengths. Radiologe. 2004;1(44):31–47. https://doi.org/10.1007/s00117-003-1000-x.

    Article  Google Scholar 

  76. Ulmer JL, Mathews VP, Elster AD, Mark LP, Daniels DL, Mueller W. MR imaging of lumbar spondylolysis: the importance of ancillary observations. AJR Am J Roentgenol. 1997;1(169):233–9. https://doi.org/10.2214/ajr.169.1.9207531.

    Article  Google Scholar 

  77. Klein G, Mehlman CT, McCarty M. Nonoperative treatment of spondylolysis and grade I spondylolisthesis in children and young adults: a meta-analysis of observational studies. J Pediatr Orthop. 2009;2(29):146–56. https://doi.org/10.1097/BPO.0b013e3181977fc5.

    Article  Google Scholar 

  78. Hollenberg GM, Beattie PF, Meyers SP, Weinberg EP, Adams MJ. Stress reactions of the lumbar pars interarticularis: the development of a new MRI classification system. Spine (Phila Pa 1976). 2002;2(27):181–6. https://doi.org/10.1097/00007632-200201150-00012.

    Article  Google Scholar 

  79. Sakai T, Sairyo K, Mima S, Yasui N. Significance of magnetic resonance imaging signal change in the pedicle in the management of pediatric lumbar spondylolysis. Spine (Phila Pa 1976). 2010;14(35):E641–5. https://doi.org/10.1097/BRS.0b013e3181c9f2a2.

    Article  Google Scholar 

  80. Sairyo K, Sakai T, Yasui N, Dezawa A. Conservative treatment for pediatric lumbar spondylolysis to achieve bone healing using a hard brace: what type and how long?: Clinical article. J Neurosurg Spine. 2012;6(16):610–4. https://doi.org/10.3171/2012.2.Spine10914.

    Article  Google Scholar 

  81. Yandrapalli S, Puckett Y. SPECT Imaging. In: editors. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.

  82. Collier BD, Johnson RP, Carrera GF, Meyer GA, Schwab JP, Flatley TJ, Isitman AT, Hellman RS, Zielonka JS, Knobel J. Painful spondylolysis or spondylolisthesis studied by radiography and single-photon emission computed tomography. Radiology. 1985;1(154):207–11. https://doi.org/10.1148/radiology.154.1.3155479.

    Article  Google Scholar 

  83. Papanicolaou N, Wilkinson RH, Emans JB, Treves S, Micheli LJ. Bone scintigraphy and radiography in young athletes with low back pain. AJR Am J Roentgenol. 1985;5(145):1039–44. https://doi.org/10.2214/ajr.145.5.1039.

    Article  Google Scholar 

  84. Pennell RG, Maurer AH, Bonakdarpour A. Stress injuries of the pars interarticularis: radiologic classification and indications for scintigraphy. AJR Am J Roentgenol. 1985;4(145):763–6. https://doi.org/10.2214/ajr.145.4.763#.

    Article  Google Scholar 

  85. Tatsumura M, Gamada H, Okuwaki S, Eto F, Nagashima K, Ogawa T, Mammoto T, Hirano A, Koda M, Yamazaki M. Factors associated with failure of bony union after conservative treatment of acute cases of unilateral lumbar spondylolysis. BMC Musculoskelet Disord. 2021;1(22):75. https://doi.org/10.1186/s12891-020-03940-9.

    Article  Google Scholar 

  86. Arima H, Suzuki Y, Togawa D, Mihara Y, Murata H, Matsuyama Y. Low-intensity pulsed ultrasound is effective for progressive-stage lumbar spondylolysis with MRI high-signal change. Eur Spine J. 2017;26(12):3122–8. https://doi.org/10.1007/s00586-017-5081-z.

    Article  PubMed  Google Scholar 

  87. Lee GW, Lee SM, Ahn MW, Kim HJ, Yeom JS. Comparison of surgical treatment with direct repair versus conservative treatment in young patients with spondylolysis: a prospective, comparative, clinical trial. Spine J. 2015;15(7):1545–53. https://doi.org/10.1016/j.spinee.2015.02.019. Prospective cohort study demonstrates that there is no difference between patients with spondylolysis treated with surgery or conservative measures in pain intensity, ODI and SF-12 scores 12 months after diagnosis

    Article  PubMed  Google Scholar 

  88. Bouras T, Korovessis P. Management of spondylolysis and low-grade spondylolisthesis in fine athletes. A comprehensive review. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S167–75. https://doi.org/10.1007/s00590-014-1560-7.

    Article  PubMed  Google Scholar 

  89. Panteliadis P, Nagra NS, Edwards KL, Behrbalk E, Boszczyk B. Athletic population with spondylolysis: review of outcomes following surgical repair or conservative management. Global Spine J. 2016;6(6):615–25. https://doi.org/10.1055/s-0036-1586743.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sys J, Michielsen J, Bracke P, Martens M, Verstreken J. Nonoperative treatment of active spondylolysis in elite athletes with normal X-ray findings: literature review and results of conservative treatment. Eur Spine J. 2001;10(6):498–504. https://doi.org/10.1007/s005860100326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Iwamoto J, Takeda T, Wakano K. Returning athletes with severe low back pain and spondylolysis to original sporting activities with conservative treatment. Scand J Med Sci Sports. 2004;14(6):346–51. https://doi.org/10.1111/j.1600-0838.2004.00379.x.

    Article  CAS  PubMed  Google Scholar 

  92. Sakai T, Tezuka F, Yamashita K, Takata Y, Higashino K, Nagamachi A, Sairyo K. Conservative treatment for bony healing in pediatric lumbar spondylolysis. Spine (Phila Pa 1976). 2017;42(12):E716–e720. https://doi.org/10.1097/brs.0000000000001931. Reports outcomes of conservative treatment in pediatric patients with lumbar spondylolysis, outlining bony healing rate by fracture stage and average treatment period required

    Article  Google Scholar 

  93. Boyd ED, Mundluru SN, Feldman DS. Outcome of conservative management in the treatment of symptomatic spondylolysis and grade I spondylolisthesis. Bull Hosp Jt Dis (2013). 2019;77(3):172–82.

    Google Scholar 

  94. Berger AA, Hasoon J, Urits I, Viswanath O, Lee A. Alleviation of chronic low back pain due to bilateral traumatic L4 pars interarticularis fractures relieved with steroid injections. Cureus. 2020;12(8):e9821. https://doi.org/10.7759/cureus.9821.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wellington K, Hsu JKW. Pars Repair. In: Wang JC, editor. Advanced reconstruction. Spine. Rosemont, III: American Academy of Orthopaedic Surgeons; 2011. p. 543–8.

    Google Scholar 

  96. Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kuniyoshi K, Aoki Y, Nakamura J, Miyagi M, Suzuki M, Kubota G, Inage K, Sainoh T, Sato J, Shiga Y, Abe K, Fujimoto K, Kanamoto H, Inoue G, Takahashi K. More than 6 months of teriparatide treatment was more effective for bone union than shorter treatment following lumbar posterolateral fusion surgery. Asian Spine J. 2015;9(4):573–80. https://doi.org/10.4184/asj.2015.9.4.573.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Huang TW, Chuang PY, Lin SJ, Lee CY, Huang KC, Shih HN, Lee MS, Hsu RW, Shen WJ. Teriparatide improves fracture healing and early functional recovery in treatment of osteoporotic intertrochanteric fractures. Medicine (Baltimore). 2016;95(19):e3626. https://doi.org/10.1097/md.0000000000003626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tsukada M, Takiuchi T, Watanabe K. Low-intensity pulsed ultrasound for early-stage lumbar spondylolysis in young athletes. Clin J Sport Med. 2019;29(4):262–6. https://doi.org/10.1097/jsm.0000000000000531.

    Article  PubMed  Google Scholar 

  99. Tawfik S, Phan K, Mobbs RJ, Rao PJ. The incidence of pars interarticularis defects in athletes. Global Spine J. 2020;10(1):89–101. https://doi.org/10.1177/2192568218823695.

    Article  PubMed  Google Scholar 

  100. Scheepers MS, Streak Gomersall J, Munn Z. The effectiveness of surgical versus conservative treatment for symptomatic unilateral spondylolysis of the lumbar spine in athletes: a systematic review. JBI Database System Rev Implement Rep. 2015;13(3):137–73. https://doi.org/10.11124/jbisrir-2015-1926.

    Article  PubMed  Google Scholar 

  101. Debnath UK, Scammell BE, Freeman BJC, McConnell JR. Predictive factors for the outcome of surgical treatment of lumbar spondylolysis in young sporting individuals. Global Spine J. 2018;8(2):121–8. https://doi.org/10.1177/2192568217713008.

    Article  PubMed  Google Scholar 

  102. Buck J. Direct repair of the defect in spondylolisthesis. Preliminary report. J Bone Joint Surg Br. 1970;52(3):432–7.

    Article  CAS  Google Scholar 

  103. Hsu WK, Wang JC. The use of bone morphogenetic protein in spine fusion. Spine J. 2008;8(3):419–25. https://doi.org/10.1016/j.spinee.2008.01.008.

    Article  PubMed  Google Scholar 

  104. Lauber S, Schulte TL, Liljenqvist U, Halm H, Hackenberg L. Clinical and radiologic 2-4-year results of transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Spine (Phila Pa 1976). 2006;31(15):1693–8. https://doi.org/10.1097/01.brs.0000224530.08481.4e.

    Article  Google Scholar 

  105. Radcliff KE, Kalantar SB, Reitman CA. Surgical management of spondylolysis and spondylolisthesis in athletes: indications and return to play. Curr Sports Med Rep. 2009;8(1):35–40. https://doi.org/10.1249/JSR.0b013e318194f89e.

    Article  PubMed  Google Scholar 

  106. de Kunder SL, van Kuijk SMJ, Rijkers K, Caelers I, van Hemert WLW, de Bie RA, van Santbrink H. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J. 2017;17(11):1712–21. https://doi.org/10.1016/j.spinee.2017.06.018.

    Article  PubMed  Google Scholar 

  107. Sebastian AS, Dalton D, Slaven SE, Welch-Phillips A, Fredericks DR Jr, Ahern DP, Butler JS. What is the optimal surgical treatment for low-grade isthmic spondylolisthesis? ALIF or TLIF? Clin Spine Surg. 2020;33(10):389–92. https://doi.org/10.1097/bsd.0000000000000926.

    Article  PubMed  Google Scholar 

  108. Derman PB, Albert TJ. Interbody fusion techniques in the surgical management of degenerative lumbar spondylolisthesis. Curr Rev Musculoskelet Med. 2017;10(4):530–8. https://doi.org/10.1007/s12178-017-9443-2.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Noorian S, Sorensen K, Cho W. A systematic review of clinical outcomes in surgical treatment of adult isthmic spondylolisthesis. Spine J. 2018;18(8):1441–54. https://doi.org/10.1016/j.spinee.2018.04.022.

    Article  PubMed  Google Scholar 

  110. Lightsey HM, Pisano AJ, Striano BM, Crawford AM, Xiong GX, Hershman S, Schoenfeld AJ, Simpson AK. ALIF versus TLIF for L5-S1 isthmic spondylolisthesis: ALIF demonstrates superior segmental and regional radiographic outcomes and clinical improvements across more patient-reported outcome measures domains. Spine (Phila Pa 1976). 2022; https://doi.org/10.1097/brs.0000000000004333.

  111. Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG. Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am. 2004;86(7):1497–503. https://doi.org/10.2106/00004623-200407000-00020.

    Article  PubMed  Google Scholar 

  112. Tarpada SP, Kim D, Levine NL, Morris MT, Cho W. Comparing surgical treatments for spondylolysis: review on current research. Clin Spine Surg. 2021;34(8):276–85. https://doi.org/10.1097/bsd.0000000000001115.

    Article  PubMed  Google Scholar 

  113. Ulibarri JA, Anderson PA, Escarcega T, Mann D, Noonan KJ. Biomechanical and clinical evaluation of a novel technique for surgical repair of spondylolysis in adolescents. Spine (Phila Pa 1976). 2006;31(18):2067–72. https://doi.org/10.1097/01.brs.0000231777.24270.2b.

    Article  Google Scholar 

  114. Debusscher F, Troussel S. Direct repair of defects in lumbar spondylolysis with a new pedicle screw hook fixation: clinical, functional and Ct-assessed study. Eur Spine J. 2007;16(10):1650–8. https://doi.org/10.1007/s00586-007-0392-0.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Suh PB, Esses SI, Kostuik JP. Repair of pars interarticularis defect. The prognostic value of pars infiltration. Spine (Phila Pa 1976). 1991;16(8 Suppl):S445–8.

    CAS  Google Scholar 

  116. Ivanic GM, Pink TP, Achatz W, Ward JC, Homann NC, May M. Direct stabilization of lumbar spondylolysis with a hook screw: mean 11-year follow-up period for 113 patients. Spine (Phila Pa 1976). 2003;28(3):255–9. https://doi.org/10.1097/01.Brs.0000042251.62696.A5.

    Article  Google Scholar 

  117. Lee GW, Lee SM, Suh BG. Direct repair surgery with screw fixation for young patients with lumbar spondylolysis: patient-reported outcomes and fusion rate in a prospective interventional study. Spine (Phila Pa 1976). 2015;40(4):E234–41. https://doi.org/10.1097/brs.0000000000000714.

    Article  Google Scholar 

  118. Kumar N, Madhu S, Pandita N, Ramos MRD, BWL T, Lopez KG, Alathur Ramakrishnan S, Jonathan P, Nolan CP, Shree Kumar D. Is there a place for surgical repair in adults with spondylolysis or grade-I spondylolisthesis-a systematic review and treatment algorithm. Spine J. 2021;21(8):1268–85. https://doi.org/10.1016/j.spinee.2021.03.011. Compares the clinical outcomes, fusion rates and complication rates of standard direct pars repair techniques and establishes that direct pars repair has a role in adults aged 18 to 45 without significant degenerative disc disease or facet joint arthropathy

    Article  PubMed  Google Scholar 

  119. Mobbs RJ, Choy WJ, Singh T, Cassar L, Davidoff C, Harris L, Phan K, Fiechter M. Three-dimensional planning and patient-specific drill guides for repair of spondylolysis/L5 pars defect. World Neurosurg. 2019;132:75–80. https://doi.org/10.1016/j.wneu.2019.08.112.

    Article  PubMed  Google Scholar 

  120. Rajasekaran S, Subbiah M, Shetty AP. Direct repair of lumbar spondylolysis by Buck’s technique. Indian J Orthop. 2011;45(2):136–40. https://doi.org/10.4103/0019-5413.77133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Karatas AF, Dede O, Atanda AA, Holmes L Jr, Rogers K, Gabos P, Shah SA. Comparison of direct pars repair techniques of spondylolysis in pediatric and adolescent patients: pars compression screw versus pedicle screw-rod-hook. Clin Spine Surg. 2016;29(7):272–80. https://doi.org/10.1097/BSD.0b013e318277cb7d. Finds that both the laminar compression screw (Buck repair) and pedicle screw-rod-laminar hook techniques produce acceptable clinical and radiographic outcomes at 6 months post-operatively

    Article  PubMed  Google Scholar 

  122. Askar Z, Wardlaw D, Koti M. Scott wiring for direct repair of lumbar spondylolysis. Spine (Phila Pa 1976). 2003;28(4):354–7. https://doi.org/10.1097/01.Brs.0000048496.55167.22.

    Article  Google Scholar 

  123. Morscher E, Gerber B, Fasel J. Surgical treatment of spondylolisthesis by bone grafting and direct stabilization of spondylolysis by means of a hook screw. Arch Orthop Trauma Surg. 1984;103(3):175–8. https://doi.org/10.1007/bf00435550.

    Article  CAS  PubMed  Google Scholar 

  124. Shin MH, Ryu KS, Rathi NK, Park CK. Direct pars repair surgery using two different surgical methods : pedicle screw with universal hook system and direct pars screw fixation in symptomatic lumbar spondylosis patients. J Korean Neurosurg Soc. 2012;51(1):14–9. https://doi.org/10.3340/jkns.2012.51.1.14.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yamamoto T, Iinuma N, Miyamoto K, Sugiyama S, Nozawa S, Hosoe H, Shimizu K. Segmental wire fixation for lumbar spondylolysis associated with spina bifida occulta. Arch Orthop Trauma Surg. 2008;128(10):1177–82. https://doi.org/10.1007/s00402-007-0521-6.

    Article  PubMed  Google Scholar 

  126. Hefti F, Seelig W, Morscher E. Repair of lumbar spondylolysis with a hook-screw. Int Orthop. 1992;16(1):81–5. https://doi.org/10.1007/bf00182992.

    Article  CAS  PubMed  Google Scholar 

  127. Manish K, Kasliwal RGF, Vincent C. Traynelis. In: Alexander R. Vaccaro EMB, editor. Spine Surgery: Operative Techniques. Philadelphia: Elsevier; 2018. p. 322–8.

    Google Scholar 

  128. Mohammed N, Patra DP, Narayan V, Savardekar AR, Dossani RH, Bollam P, Bir S, Nanda A. A comparison of the techniques of direct pars interarticularis repairs for spondylolysis and low-grade spondylolisthesis: a meta-analysis. Neurosurg Focus. 2018;44(1):E10. https://doi.org/10.3171/2017.11.Focus17581. Meta-analysis compares the four most common direct repair techniques and finds that the pedicle screw-based direct repair has the highest fusion rate and lowest complication rate, followed by the Buck repair

    Article  PubMed  Google Scholar 

  129. Fan J, Yu GR, Liu F, Zhao J, Zhao WD. A biomechanical study on the direct repair of spondylolysis by different techniques of fixation. Orthop Surg. 2010;2(1):46–51. https://doi.org/10.1111/j.1757-7861.2009.00064.x.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lu J, Ebraheim NA, Biyani A, Yang H. Screw placement in the lumbar vertebral isthmus. Clin Orthop Relat Res. 1997;338:227–30. https://doi.org/10.1097/00003086-199705000-00030.

    Article  Google Scholar 

  131. Gagnet P, Kern K, Andrews K, Elgafy H, Ebraheim N. Spondylolysis and spondylolisthesis: a review of the literature. J Orthop. 2018;15(2):404–7. https://doi.org/10.1016/j.jor.2018.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sairyo K, Sakai T, Yasui N. Minimally invasive technique for direct repair of pars interarticularis defects in adults using a percutaneous pedicle screw and hook-rod system. J Neurosurg Spine. 2009;10(5):492–5. https://doi.org/10.3171/2009.2.Spine08594.

    Article  PubMed  Google Scholar 

  133. Reitman CA, Esses SI. Direct repair of spondylolytic defects in young competitive athletes. Spine J. 2002;2(2):142–4. https://doi.org/10.1016/s1529-9430(02)00179-1.

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

AL—idea generation, manuscript research, writing and preparation. Dr. WH—idea generation, manuscript editing.

Corresponding author

Correspondence to Alexander A. Linton.

Ethics declarations

Competing Interests

Alexander Linton—No conflicts. Dr. Wellington Hsu—Advisory board member of Stryker, Medtronic, Asahi, Bioventus.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Updates in Spine Surgery - Techniques, Biologics, and Non-Operative Management

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linton, A.A., Hsu, W.K. A Review of Treatment for Acute and Chronic Pars Fractures in the Lumbar Spine. Curr Rev Musculoskelet Med 15, 259–271 (2022). https://doi.org/10.1007/s12178-022-09760-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-022-09760-9

Keywords

  • Spondylolysis
  • Pars Defect
  • Spondylolisthesis
  • Spine surgery
  • Athletics