Skip to main content

Cannabinoid Use in Musculoskeletal Illness: a Review of the Current Evidence

Abstract

Purpose of Review

The use of cannabinoids has increased since legalization of recreational and medical use in the USA. It is likely that many orthopaedic patients consume cannabinoid products during the traumatic or perioperative period. The purpose of this study was to investigate the pre-clinical data evaluating the mechanism of action of cannabidiol (CBD) and Δ9-Tetrahydrocannabinol (Δ9-THC) and to evaluate the current clinical data on the use of cannabinoids in musculoskeletal illness.

Recent Findings

Recent pre-clinical studies have demonstrated that cannabinoid use and the endocannabinoid system (ECS) has an important role in bone healing and bone homeostasis. There is data that suggests that the use of cannabidiol (CBD) may increase bone healing, whereas the use of Δ9-Tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in marijuana, likely inhibits bone metabolism and repair. The clinical implications and consumption of marijuana by orthopaedic patients have not been thoroughly evaluated. Studies have demonstrated concern for negative cardiovascular and psychiatric effects caused by marijuana use, but have not yet elucidated outcomes in the orthopaedic literature.

Summary

With the recent increase in advertising of CBD products and legalization of marijuana, it is likely that many orthopaedic patients are consuming cannabinoid products. The clinical implications and consumption of these products are unclear. We need more robust and well-designed clinical studies prior to making further recommendations to our patients on the consumption of these products.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Callaghan RC, Allebeck P, Sidorchuk A. Marijuana use and risk of lung cancer: a 40-year cohort study. Cancer Causes Control. 2013;24:1811–20.

    Article  Google Scholar 

  2. Moon AS, Smith W, Mullen S, Ponce BA, McGwin G, Shah A, et al. Marijuana use and mortality following orthopedic surgical procedures. Subst Abus. 2018:1–5 Self-reported use of cannabinoids has increased since legalization of recreational and medical use, with over 22 million Americans over age 12 using marijuana in 2016. A decreased inpatient mortality rate has been seen in orthopedic patients who used marijuana compared with non-users.

  3. Jennings JM, Angerame MR, Eschen CL, Phocas AJ, Dennis DA. Cannabis use does not affect outcomes after total knee arthroplasty. J Arthroplast. 2019;34:1667–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S088354031930347X. Self-reported use of cannabinoids has increased since legalization of recreational and medical use.

  4. Wilkinson ST, Yarnell S, Radhakrishnan R, Ball SA, D’Souza DC. Marijuana legalization: impact on physicians and public health. Annu Rev Med. 2016;67:453–66 Available from: http://www.annualreviews.org/doi/10.1146/annurev-med-050214-013454.

    CAS  Article  Google Scholar 

  5. Ayers JW, Caputi TL, Leas EC. The need for federal regulation of marijuana marketing. JAMA. 2019;321:2163. Available from: https://jamanetwork.com/journals/jama/fullarticle/2734209. Aggressive advertising for marijuana and CBD products has likely impacted increasing consumption by orthopedic patients during the perioperative period.

  6. Leas EC, Nobles AL, Caputi TL, Dredze M, Smith DM, Ayers JW. Trends in Internet searches for cannabidiol (CBD) in the United States. JAMA Netw Open. 2019;2:e1913853. Available from: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2753393. It is estimated that many orthopedic patients consume cannabinoid products during the perioperative period.

  7. Gowran A, McKayed K, Campbell VA. The cannabinoid receptor type 1 is essential for mesenchymal stem cell survival and differentiation: implications for bone health. Stem Cells Int. 2013;2013:1–8 Available from: http://www.hindawi.com/journals/sci/2013/796715/.

    Article  Google Scholar 

  8. Van Der Stelt M, Di Marzo V. Cannabinoid receptors and their role in neuroprotection. NeuroMolecular Med. 2005;7:37–50.

    Article  Google Scholar 

  9. Lamontagne D, Lépicier P, Lagneux C, Bouchard JF. The endogenous cardiac cannabinoid system: a new protective mechanism against myocardial ischemia. Arch Mal Coeur Vaiss. 2006;99:242–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16618028.

    CAS  PubMed  Google Scholar 

  10. Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes. 2006:S13–8.

  11. Wang X, Galaj E, Bi G, Zhang C, He Y, Zhan J, et al. Different receptor mechanisms underlying phytocannabinoid- versus synthetic cannabinoid-induced tetrad effects: opposite roles of CB1/CB2 versus GPR55 receptors. Br J Pharmacol. 2019;bph.14958. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/bph.14958.

  12. Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, et al. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A. 2009;106:16511–6 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0902743106.

    CAS  Article  Google Scholar 

  13. Sophocleous A, Robertson R, Ferreira NB, McKenzie J, Fraser WD, Ralston SH. Heavy cannabis use is associated with low bone mineral density and an increased risk of fractures. Am J Med. 2017;130:214–21.

    CAS  Article  Google Scholar 

  14. Idris AI, Sophocleous A, Landao-Bassonga E, Van’t Hof RJ, Ralston SH, Greig IR, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Endocrinology. 2005;11:774–9 Available from: http://www.nature.com/articles/nm1255.

    CAS  Google Scholar 

  15. Idris AI, Van’t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med. 2005;11:774–9 Available from: http://www.nature.com/articles/nm1255.

    CAS  Article  Google Scholar 

  16. Idris AI, Sophocleous A, Landao-Bassonga E, Canals M, Milligan G, Baker D, et al. Cannabinoid receptor type 1 protects against age- related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab. 2009;10:139–47 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1550413109002022.

    CAS  Article  Google Scholar 

  17. Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, et al. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci U S A. 2006;103:696–701 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0504187103.

    CAS  Article  Google Scholar 

  18. Idris AI, Sophocleous A, Landao-Bassonga E, Van’t Hof RJ, Ralston SH. Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology. 2008;149:5619–26 Available from: https://academic.oup.com/endo/article-lookup/doi/10.1210/en.2008-0150.

    CAS  Article  Google Scholar 

  19. Scutt A, Williamson EM. Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors. Calcif Tissue Int. 2007;80:50–9 Available from: http://link.springer.com/10.1007/s00223-006-0171-7.

    CAS  Article  Google Scholar 

  20. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202 Available from: http://pharmrev.aspetjournals.org/cgi/doi/10.1124/pr.54.2.161.

    CAS  Article  Google Scholar 

  21. Gowran A, McKayed K, Kanichai M, White C, Hammadi N, Campbell V. Tissue engineering of cartilage; can cannabinoids help? Pharmaceuticals. 2010;3:2970–85 Available from: http://www.mdpi.com/1424-8247/3/9/2970.

    CAS  Article  Google Scholar 

  22. Leas EC, Nobles AL, Caputi TL, Dredze M, Smith DM, Ayers JW. Trends in Internet searches for cannabidiol (CBD) in the United States. JAMA Netw Open. 2019;2:e1913853.

    Article  Google Scholar 

  23. Gowran A, Campbell VA. A role for p53 in the regulation of lysosomal permeability by Δ 9 -tetrahydrocannabinol in rat cortical neurones: implications for neurodegeneration. J Neurochem. 2008;105:1513–24 Available from: http://doi.wiley.com/10.1111/j.1471-4159.2008.05278.x.

    CAS  Article  Google Scholar 

  24. Greenhough A, Patsos HA, Williams AC, Paraskeva C. The cannabinoid Δ9-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int J Cancer. 2007;121:2172–80 Available from: http://doi.wiley.com/10.1002/ijc.22917.

    CAS  Article  Google Scholar 

  25. Salazar M, Carracedo A, Salanueva ÍJ, Hernández-Tiedra S, Lorente M, Egia A, et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest. 2009;119:1359–72 Available from: http://www.jci.org/articles/view/37948.

    CAS  Article  Google Scholar 

  26. Caffarel MM, Sarrió D, Palacios J, Guzmán M, Sánchez C. Δ9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res. 2006;66:6615–21 Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-05-4566.

    CAS  Article  Google Scholar 

  27. Nogueira-Filho GDR, Cadide T, Rosa BT, Neiva TG, Tunes R, Peruzzo D, et al. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats. Implant Dent. 2008;17:461–70 Available from: https://insights.ovid.com/crossref?an=00008505-200812000-00013.

    Article  Google Scholar 

  28. Kogan NM, Melamed E, Wasserman E, Raphael B, Breuer A, Stok KS, et al. Cannabidiol, a major non-psychotropic cannabis constituent enhances fracture healing and stimulates lysyl hydroxylase activity in osteoblasts. J Bone Miner Res. 2015;30:1905–13 Available from: http://doi.wiley.com/10.1002/jbmr.2513.

    CAS  Article  Google Scholar 

  29. Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, et al. Cannabidiol: state of the art and new challenges for therapeutic applications. Pharmacol Ther. 2017;175:133–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163725817300657. CBD has been well studied for a number of illnesses including neurodegenerative disease, epilepsy, and immune disorders such as multiple sclerosis, arthritis, and cancer. Currently, it is FDA approved only for the treatment of epilepsy.

  30. Kamali A, Oryan A, Hosseini S, Ghanian MH, Alizadeh M, Baghaban Eslaminejad M, et al. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C. 2019;101:64–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493118303606. Further studies are needed to better evaluate the role of CBD in human bone healing and metabolism, as well as the long-term effects of CBD ingestion.

  31. Best MJ, Buller LT, Klika AK, Barsoum WK. Outcomes following primary total hip or knee arthroplasty in substance misusers. J Arthroplast. 2015;30:1137–41 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0883540315000777.

    Article  Google Scholar 

  32. Law TY, Kurowicki J, Rosas S, Sabeh K, Summers S, Hubbard Z, et al. Cannabis use increases risk for revision after total knee arthroplasty. J Long Term Eff Med Implants. 2018;28:125–30. Available from: http://www.dl.begellhouse.com/journals/1bef42082d7a0fdf,639e402206fa0df3,4c9989d43961247f.html. A retrospective review of the Medicare database on total knee arthroplasty patients evaluating those who used marijuana compared with those who did not found a significant increase in reoperation rate due to infection in the cohort that used marijuana.

  33. Fitzcharles MA, Häuser W. Cannabinoids in the management of musculoskeletal or rheumatic diseases. Curr Rheumatol Rep. 2016;18.

  34. Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE. Triggering myocardial infarction by marijuana. Circulation. 2001;103:2805–9 Available from: https://www.ahajournals.org/doi/10.1161/01.CIR.103.23.2805.

    CAS  Article  Google Scholar 

  35. Rumalla K, Reddy AY, Mittal MK. Association of recreational marijuana use with aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2016;25:452–60.

    Article  Google Scholar 

  36. Moussouttas M. Cannabis use and cerebrovascular disease. Neurol Int. 2004;10:47–53 Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00127893-200401000-00005.

    Google Scholar 

  37. Thomas G, Kloner RA, Rezkalla S. Adverse cardiovascular, cerebrovascular, and peripheral vascular effects of marijuana inhalation: what cardiologists need to know. Am J Cardiol. 2014;113:187–90 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002914913019760.

    CAS  Article  Google Scholar 

  38. Rumalla K, Reddy AY, Mittal MK. Recreational marijuana use and acute ischemic stroke: a population-based analysis of hospitalized patients in the United States. J Neurol Sci. 2016;364:191–6 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022510X16300661.

    Article  Google Scholar 

  39. Madden K, van der Hoek N, Chona S, George A, Dalchand T, Baldawi H, et al. Cannabinoids in the management of musculoskeletal pain. JBJS Rev. 2018;6:1. Available from: http://insights.ovid.com/crossref?an=01874474-900000000-99892. Cannabinoids, if effective for pain relief, could potentially reduce the opioid burden.

  40. Lötsch J, Weyer-Menkhoff I, Tegeder I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur J Pain (United Kingdom). 2018;22:471–84. Available from: http://doi.wiley.com/10.1002/ejp.1148. Δ9-THC has also been shown to have euphoric and psychoactive effects, both of which have a role in pain modulation and experience. Clinical evidence has not demonstrated similar findings in human experiments.

  41. Häuser W, Fitzcharles MA, Radbruch L, Petzke F. Cannabinoids in pain management and palliative medicine. Dtsch Arztebl Int. 2017;114:627–34. Available from: https://www.aerzteblatt.de/10.3238/arztebl.2017.0627. No clear benefit from the use of cannabinoids has been shown to be better than placebo, due in part to a lack of high-quality evidence to support the use of medical marijuana therapy for acute or chronic pain indications. There is a lack of evidence supporting the common use of marijuana for chronic rheumatologic, oncologic, or arthritic pain.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey M. O’Connor.

Ethics declarations

Ethical Review Committee Statement

The study has been performed in accordance with the ethical standards in the 1964 Declaration of Helsinki and has been carried out in accordance with relevant regulations of the US Health Insurance Portability and Accountability Act (HIPAA).

This work was performed at The Albany Medical Center, Albany, NY.

Conflict of Interest

Casey M. O’Connor, Afshin A. Anoushiravani, Curtis Adams, Joe Young, Kyle Richardson, and Andrew J. Rosenbaum declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects. Informed consent was not required for this study as it did not study human subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Connor, C.M., Anoushiravani, A.A., Adams, C. et al. Cannabinoid Use in Musculoskeletal Illness: a Review of the Current Evidence. Curr Rev Musculoskelet Med 13, 379–384 (2020). https://doi.org/10.1007/s12178-020-09635-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-020-09635-x

Keywords

  • Cannabinoid
  • Marijuana
  • Cannabidiol
  • CBD
  • Orthopaedic surgery