Petersen W, Tillmann B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl). 1999;200(3):325–34.
CAS
Google Scholar
Uchida R, Horibe S, Nakamura N. Stem cell-based therapy in anterior cruciate ligament repair. Ann Jt. 2017;2(11):1–9.
Google Scholar
Robson AW. VI. Ruptured crucial ligaments and their repair by operation. Ann Surg. 1903;37(5):716–8.
CAS
PubMed
PubMed Central
Google Scholar
Weaver JK, Derkash RS, Freeman JR, Kirk RE, Oden RR, Matyas J. Primary knee ligament repair--revisited. Clin Orthop Relat Res. 1985;199:185–91.
Google Scholar
Sherman MF, Lieber L, Bonamo JR, Podesta L, Reiter I. The long-term follow-up of primary anterior cruciate ligament repair. Defining a rationale for augmentation. Am J Sports Med. 1991;19(3):243–55.
CAS
PubMed
Google Scholar
van der List JP, DiFelice GS. Primary repair of the anterior cruciate ligament: a paradigm shift. Surgeon. 2017;15(3):161–8.
PubMed
Google Scholar
van der List JP, DiFelice GS. Range of motion and complications following primary repair versus reconstruction of the anterior cruciate ligament. Knee. 2017;24(4):798–807.
PubMed
Google Scholar
• Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95 Classic and landmark paper describing adipose tissue as a source of multipotent stem cells, leading the establishment and subsequent growth of AMSC literature.
CAS
PubMed
PubMed Central
Google Scholar
Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204–13.
PubMed
PubMed Central
Google Scholar
Sullivan MO, Gordon-Evans WJ, Fredericks LP, Kiefer K, Conzemius MG, Griffon DJ. Comparison of mesenchymal stem cell surface markers from bone marrow aspirates and adipose stromal vascular fraction sites. Front Vet Sci. 2016;2:82.
PubMed
PubMed Central
Google Scholar
Smith J, Hurdle MF, Weingarten TN. Accuracy of sonographically guided intra-articular injections in the native adult hip. J Ultrasound Med. 2009;28(3):329–35.
PubMed
Google Scholar
Nguyen C, Rannou F. The safety of intra-articular injections for the treatment of knee osteoarthritis: a critical narrative review. Expert Opin Drug Saf. 2017;16(8):897–902.
CAS
PubMed
Google Scholar
Gaujoux-Viala C, Dougados M, Gossec L. Efficacy and safety of steroid injections for shoulder and elbow tendonitis: a meta-analysis of randomised controlled trials. Ann Rheum Dis. 2009;68(12):1843–9.
CAS
PubMed
Google Scholar
Peterson C, Hodler J. Adverse events from diagnostic and therapeutic joint injections: a literature review. Skelet Radiol. 2011;40(1):5–12.
Google Scholar
Murray MM, Flutie BM, Kalish LA, Ecklund K, Fleming BC, Proffen BL, et al. The bridge-enhanced anterior cruciate ligament repair (BEAR) procedure: an early feasibility cohort study. Orthop J Sports Med. 2016;4(11):2325967116672176.
PubMed
PubMed Central
Google Scholar
Kiapour AM, Ecklund K, Murray MM, Flutie B, Freiberger C, Henderson R, et al. Changes in cross-sectional area and signal intensity of healing anterior cruciate ligaments and grafts in the first 2 years after surgery. Am J Sports Med. 2019;47(8):1831–43.
PubMed
PubMed Central
Google Scholar
Murray MM, Kalish LA, Fleming BC, Flutie B, Freiberger C, Henderson RN, et al. Bridge-enhanced anterior cruciate ligament repair: two-year results of a first-in-human study. Orthop J Sports Med. 2019;7(3):2325967118824356.
PubMed
PubMed Central
Google Scholar
Crispim JF, Fu SC, Lee YW, Fernandes HAM, Jonkheijm P, Yung PSH, et al. Bioactive tape with BMP-2 binding peptides captures endogenous growth factors and accelerates healing after anterior cruciate ligament reconstruction. Am J Sports Med. 2018;46(12):2905–14.
PubMed
Google Scholar
Hevesi M, Paradise CR, Paggi CA, Galeano-Garces C, Dudakovic A, Karperien M, et al. Defining the baseline transcriptional fingerprint of rabbit hamstring autograft. Gene Rep. 2019;15:100363.
Google Scholar
Hevesi M, Crispim JF, Paggi CA, Dudakovic A, van Genechten W, Hewett T, et al. A versatile protocol for studying anterior cruciate ligament reconstruction in a rabbit model. Tissue Eng Part C Methods. 2019;25(4):191–6.
PubMed
Google Scholar
Heilmann HH, Lindenhayn K, Walther HU. Synovial volume of healthy and arthrotic human knee joints. Z Orthop Ihre Grenzgeb. 1996;134(2):144–8.
CAS
PubMed
Google Scholar
Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol. 2014;30:677–704.
CAS
PubMed
Google Scholar
Ekwueme EC, Shah JV, Mohiuddin M, Ghebes CA, Crispim JF, Saris DB, et al. Cross-talk between human tenocytes and bone marrow stromal cells potentiates extracellular matrix remodeling in vitro. J Cell Biochem. 2016;117(3):684–93.
CAS
PubMed
Google Scholar
Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8(2):166–77.
CAS
PubMed
Google Scholar
Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24(4):150–4.
CAS
PubMed
Google Scholar
Tremolada C, Colombo V, Ventura C. Adipose tissue and mesenchymal stem cells: state of the art and Lipogems® technology development. Curr Stem Cell Rep. 2016;2(3):304–12.
CAS
PubMed
PubMed Central
Google Scholar
Norelli JB, Plaza DP, Stal DN, Varghese AM, Liang H, Grande DA. Tenogenically differentiated adipose-derived stem cells are effective in Achilles tendon repair in vivo. J Tissue Eng. 2018;9:2041731418811183.
PubMed
Google Scholar
Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, et al. Adipose-derived mesenchymal stem cells: a promising tool in the treatment of musculoskeletal diseases. Int J Mol Sci. 2019;20(12):3105.
PubMed Central
Google Scholar
• Zhou W, Lin J, Zhao K, Jin K, He Q, Hu Y, et al. Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin. Am J Sports Med. 2019;47(7):1722–33 Direct comparison of same patient BMSCs and AMSCs employing modern RNA sequencing methodology to compare the transcriptional fingerprint of the two stem/stromal cell types. AMSCs demonstrate lower HLA I expression and higher immunosuppression capacity compared with AMSCs.
PubMed
Google Scholar
de Windt TS, Vonk LA, Slaper-Cortenbach IC, van den Broek MP, Nizak R, van Rijen MH, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells. 2017;35(1):256–64.
PubMed
Google Scholar
Dalle JH, Balduzzi A, Bader P, Lankester A, Yaniv I, Wachowiak J, et al. Allogeneic stem cell transplantation from HLA-mismatched donors for pediatric patients with acute lymphoblastic leukemia treated according to the 2003 BFM and 2007 international BFM studies: impact of disease risk on outcomes. Biol Blood Marrow Transplant. 2018;24(9):1848–55.
PubMed
Google Scholar
Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, et al. The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am. 2008;90(3):565–79.
PubMed
Google Scholar
Hu J, Yao B, Yang X, Ma F. The immunosuppressive effect of Siglecs on tendon-bone healing after ACL reconstruction. Med Hypotheses. 2015;84(1):38–9.
CAS
PubMed
Google Scholar
Kawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA. Macrophages accumulate in the early phase of tendon-bone healing. J Orthop Res. 2005;23(6):1425–32.
CAS
PubMed
Google Scholar
Samitier G, Marcano AI, Alentorn-Geli E, Cugat R, Farmer KW, Moser MW. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg. 2015;3(4):220–40.
PubMed
PubMed Central
Google Scholar
Zaffagnini S, Grassi A, Serra M, Marcacci M. Return to sport after ACL reconstruction: how, when and why? A narrative review of current evidence. Joints. 2015;3(1):25–30.
PubMed
PubMed Central
Google Scholar
McArdle S. Psychological rehabilitation from anterior cruciate ligament-medial collateral ligament reconstructive surgery: a case study. Sports Health. 2010;2(1):73–7.
PubMed
PubMed Central
Google Scholar
Kanaya A, Deie M, Adachi N, Nishimori M, Yanada S, Ochi M. Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy. 2007;23(6):610–7.
PubMed
Google Scholar
Oe K, Kushida T, Okamoto N, Umeda M, Nakamura T, Ikehara S, et al. New strategies for anterior cruciate ligament partial rupture using bone marrow transplantation in rats. Stem Cells Dev. 2011;20(4):671–9.
CAS
PubMed
Google Scholar
Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res. 2008;332(3):469–78.
PubMed
Google Scholar
Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy. 2004;20(9):899–910.
PubMed
Google Scholar
• Wang Y, Shimmin A, Ghosh P, Marks P, Linklater J, Connell D, et al. Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomised trial. Arthritis Res Ther. 2017;19(1):180 Human double-blinded randomized control trial demonstrating safety of allogeneic mesenchymal precursor cell injection in the setting of ACL reconstruction, improved patient-reported outcomes, and reduced tibiofemoral joint space narrowing.
PubMed
PubMed Central
Google Scholar
Centeno C, Markle J, Dodson E, Stemper I, Williams C, Hyzy M, et al. Symptomatic anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow concentrate and platelet products: a non-controlled registry study. J Transl Med. 2018;16(1):246.
CAS
PubMed
PubMed Central
Google Scholar
• Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38(9):1811–8 Classic early report of MSCs used in tendon healing, important given the predominance of tendon tissues for ACL reconstruction. Demonstrated improved healing rates and decreased subsequent rotator cuff tears in the MSC group as compared with controls.
PubMed
Google Scholar
Kim YS, Sung CH, Chung SH, Kwak SJ, Koh YG. Does an injection of adipose-derived mesenchymal stem cells loaded in fibrin glue influence rotator cuff repair outcomes? A clinical and magnetic resonance imaging study. Am J Sports Med. 2017;45(9):2010–8.
PubMed
Google Scholar