Skip to main content

Advertisement

Log in

Stem Cell Treatment for Ligament Repair and Reconstruction

  • Stem Cells in Orthopaedic Surgery (J Dragoo and K Jones, Section Editors)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

With the rapid and ongoing evolution of regenerative and sports medicine, the use of stem/stromal cells in ligament repair and reconstruction continues to be investigated and grow. The purpose of this review was to assess available methods and formulations for stem/stromal cell augmentation as well as review early pre-clinical and clinical outcomes for these recently emerging techniques.

Recent Findings

Recent literature demonstrates promising outcomes of stem/stromal cell augmentation for ligament repair and reconstruction. Multiple groups have published animal models suggesting improved healing for partially transected ligaments as well as histologic re-approximation of native bone-tendon interfaces with the use of mesenchymal stem/stromal cells in reconstructive models. Human studies also suggest improved outcomes spanning from higher patient-reported outcome scores to magnetic resonance imaging evidence of ligament healing in the setting of anterior cruciate ligament tears. However, clinical studies are only recently available, relatively few in number, and not necessarily accompanied by standard-of-care controls.

Summary

There is increasing availability and growing animal and clinical evidence demonstrating potential benefit of stem/stromal cell augmentation for tendon healing. However, to date, there is a relative paucity of high-level human evidence for the routine use of stem/stromal cells for ligament repair and reconstruction in the clinical practice. This field contains substantial promise and merits further, ongoing investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Petersen W, Tillmann B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl). 1999;200(3):325–34.

    CAS  Google Scholar 

  2. Uchida R, Horibe S, Nakamura N. Stem cell-based therapy in anterior cruciate ligament repair. Ann Jt. 2017;2(11):1–9.

    Google Scholar 

  3. Robson AW. VI. Ruptured crucial ligaments and their repair by operation. Ann Surg. 1903;37(5):716–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Weaver JK, Derkash RS, Freeman JR, Kirk RE, Oden RR, Matyas J. Primary knee ligament repair--revisited. Clin Orthop Relat Res. 1985;199:185–91.

    Google Scholar 

  5. Sherman MF, Lieber L, Bonamo JR, Podesta L, Reiter I. The long-term follow-up of primary anterior cruciate ligament repair. Defining a rationale for augmentation. Am J Sports Med. 1991;19(3):243–55.

    CAS  PubMed  Google Scholar 

  6. van der List JP, DiFelice GS. Primary repair of the anterior cruciate ligament: a paradigm shift. Surgeon. 2017;15(3):161–8.

    PubMed  Google Scholar 

  7. van der List JP, DiFelice GS. Range of motion and complications following primary repair versus reconstruction of the anterior cruciate ligament. Knee. 2017;24(4):798–807.

    PubMed  Google Scholar 

  8. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95 Classic and landmark paper describing adipose tissue as a source of multipotent stem cells, leading the establishment and subsequent growth of AMSC literature.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204–13.

    PubMed  PubMed Central  Google Scholar 

  10. Sullivan MO, Gordon-Evans WJ, Fredericks LP, Kiefer K, Conzemius MG, Griffon DJ. Comparison of mesenchymal stem cell surface markers from bone marrow aspirates and adipose stromal vascular fraction sites. Front Vet Sci. 2016;2:82.

    PubMed  PubMed Central  Google Scholar 

  11. Smith J, Hurdle MF, Weingarten TN. Accuracy of sonographically guided intra-articular injections in the native adult hip. J Ultrasound Med. 2009;28(3):329–35.

    PubMed  Google Scholar 

  12. Nguyen C, Rannou F. The safety of intra-articular injections for the treatment of knee osteoarthritis: a critical narrative review. Expert Opin Drug Saf. 2017;16(8):897–902.

    CAS  PubMed  Google Scholar 

  13. Gaujoux-Viala C, Dougados M, Gossec L. Efficacy and safety of steroid injections for shoulder and elbow tendonitis: a meta-analysis of randomised controlled trials. Ann Rheum Dis. 2009;68(12):1843–9.

    CAS  PubMed  Google Scholar 

  14. Peterson C, Hodler J. Adverse events from diagnostic and therapeutic joint injections: a literature review. Skelet Radiol. 2011;40(1):5–12.

    Google Scholar 

  15. Murray MM, Flutie BM, Kalish LA, Ecklund K, Fleming BC, Proffen BL, et al. The bridge-enhanced anterior cruciate ligament repair (BEAR) procedure: an early feasibility cohort study. Orthop J Sports Med. 2016;4(11):2325967116672176.

    PubMed  PubMed Central  Google Scholar 

  16. Kiapour AM, Ecklund K, Murray MM, Flutie B, Freiberger C, Henderson R, et al. Changes in cross-sectional area and signal intensity of healing anterior cruciate ligaments and grafts in the first 2 years after surgery. Am J Sports Med. 2019;47(8):1831–43.

    PubMed  PubMed Central  Google Scholar 

  17. Murray MM, Kalish LA, Fleming BC, Flutie B, Freiberger C, Henderson RN, et al. Bridge-enhanced anterior cruciate ligament repair: two-year results of a first-in-human study. Orthop J Sports Med. 2019;7(3):2325967118824356.

    PubMed  PubMed Central  Google Scholar 

  18. Crispim JF, Fu SC, Lee YW, Fernandes HAM, Jonkheijm P, Yung PSH, et al. Bioactive tape with BMP-2 binding peptides captures endogenous growth factors and accelerates healing after anterior cruciate ligament reconstruction. Am J Sports Med. 2018;46(12):2905–14.

    PubMed  Google Scholar 

  19. Hevesi M, Paradise CR, Paggi CA, Galeano-Garces C, Dudakovic A, Karperien M, et al. Defining the baseline transcriptional fingerprint of rabbit hamstring autograft. Gene Rep. 2019;15:100363.

    Google Scholar 

  20. Hevesi M, Crispim JF, Paggi CA, Dudakovic A, van Genechten W, Hewett T, et al. A versatile protocol for studying anterior cruciate ligament reconstruction in a rabbit model. Tissue Eng Part C Methods. 2019;25(4):191–6.

    PubMed  Google Scholar 

  21. Heilmann HH, Lindenhayn K, Walther HU. Synovial volume of healthy and arthrotic human knee joints. Z Orthop Ihre Grenzgeb. 1996;134(2):144–8.

    CAS  PubMed  Google Scholar 

  22. Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol. 2014;30:677–704.

    CAS  PubMed  Google Scholar 

  23. Ekwueme EC, Shah JV, Mohiuddin M, Ghebes CA, Crispim JF, Saris DB, et al. Cross-talk between human tenocytes and bone marrow stromal cells potentiates extracellular matrix remodeling in vitro. J Cell Biochem. 2016;117(3):684–93.

    CAS  PubMed  Google Scholar 

  24. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8(2):166–77.

    CAS  PubMed  Google Scholar 

  25. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24(4):150–4.

    CAS  PubMed  Google Scholar 

  26. Tremolada C, Colombo V, Ventura C. Adipose tissue and mesenchymal stem cells: state of the art and Lipogems® technology development. Curr Stem Cell Rep. 2016;2(3):304–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Norelli JB, Plaza DP, Stal DN, Varghese AM, Liang H, Grande DA. Tenogenically differentiated adipose-derived stem cells are effective in Achilles tendon repair in vivo. J Tissue Eng. 2018;9:2041731418811183.

    PubMed  Google Scholar 

  28. Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, et al. Adipose-derived mesenchymal stem cells: a promising tool in the treatment of musculoskeletal diseases. Int J Mol Sci. 2019;20(12):3105.

    PubMed Central  Google Scholar 

  29. • Zhou W, Lin J, Zhao K, Jin K, He Q, Hu Y, et al. Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin. Am J Sports Med. 2019;47(7):1722–33 Direct comparison of same patient BMSCs and AMSCs employing modern RNA sequencing methodology to compare the transcriptional fingerprint of the two stem/stromal cell types. AMSCs demonstrate lower HLA I expression and higher immunosuppression capacity compared with AMSCs.

    PubMed  Google Scholar 

  30. de Windt TS, Vonk LA, Slaper-Cortenbach IC, van den Broek MP, Nizak R, van Rijen MH, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells. 2017;35(1):256–64.

    PubMed  Google Scholar 

  31. Dalle JH, Balduzzi A, Bader P, Lankester A, Yaniv I, Wachowiak J, et al. Allogeneic stem cell transplantation from HLA-mismatched donors for pediatric patients with acute lymphoblastic leukemia treated according to the 2003 BFM and 2007 international BFM studies: impact of disease risk on outcomes. Biol Blood Marrow Transplant. 2018;24(9):1848–55.

    PubMed  Google Scholar 

  32. Hays PL, Kawamura S, Deng XH, Dagher E, Mithoefer K, Ying L, et al. The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am. 2008;90(3):565–79.

    PubMed  Google Scholar 

  33. Hu J, Yao B, Yang X, Ma F. The immunosuppressive effect of Siglecs on tendon-bone healing after ACL reconstruction. Med Hypotheses. 2015;84(1):38–9.

    CAS  PubMed  Google Scholar 

  34. Kawamura S, Ying L, Kim HJ, Dynybil C, Rodeo SA. Macrophages accumulate in the early phase of tendon-bone healing. J Orthop Res. 2005;23(6):1425–32.

    CAS  PubMed  Google Scholar 

  35. Samitier G, Marcano AI, Alentorn-Geli E, Cugat R, Farmer KW, Moser MW. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg. 2015;3(4):220–40.

    PubMed  PubMed Central  Google Scholar 

  36. Zaffagnini S, Grassi A, Serra M, Marcacci M. Return to sport after ACL reconstruction: how, when and why? A narrative review of current evidence. Joints. 2015;3(1):25–30.

    PubMed  PubMed Central  Google Scholar 

  37. McArdle S. Psychological rehabilitation from anterior cruciate ligament-medial collateral ligament reconstructive surgery: a case study. Sports Health. 2010;2(1):73–7.

    PubMed  PubMed Central  Google Scholar 

  38. Kanaya A, Deie M, Adachi N, Nishimori M, Yanada S, Ochi M. Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy. 2007;23(6):610–7.

    PubMed  Google Scholar 

  39. Oe K, Kushida T, Okamoto N, Umeda M, Nakamura T, Ikehara S, et al. New strategies for anterior cruciate ligament partial rupture using bone marrow transplantation in rats. Stem Cells Dev. 2011;20(4):671–9.

    CAS  PubMed  Google Scholar 

  40. Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res. 2008;332(3):469–78.

    PubMed  Google Scholar 

  41. Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy. 2004;20(9):899–910.

    PubMed  Google Scholar 

  42. • Wang Y, Shimmin A, Ghosh P, Marks P, Linklater J, Connell D, et al. Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomised trial. Arthritis Res Ther. 2017;19(1):180 Human double-blinded randomized control trial demonstrating safety of allogeneic mesenchymal precursor cell injection in the setting of ACL reconstruction, improved patient-reported outcomes, and reduced tibiofemoral joint space narrowing.

    PubMed  PubMed Central  Google Scholar 

  43. Centeno C, Markle J, Dodson E, Stemper I, Williams C, Hyzy M, et al. Symptomatic anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow concentrate and platelet products: a non-controlled registry study. J Transl Med. 2018;16(1):246.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38(9):1811–8 Classic early report of MSCs used in tendon healing, important given the predominance of tendon tissues for ACL reconstruction. Demonstrated improved healing rates and decreased subsequent rotator cuff tears in the MSC group as compared with controls.

    PubMed  Google Scholar 

  45. Kim YS, Sung CH, Chung SH, Kwak SJ, Koh YG. Does an injection of adipose-derived mesenchymal stem cells loaded in fibrin glue influence rotator cuff repair outcomes? A clinical and magnetic resonance imaging study. Am J Sports Med. 2017;45(9):2010–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Krych.

Ethics declarations

Conflict of Interest

Mario Hevesi, Matthew LaPrade, Daniel B. F. Saris, and Aaron J. Krych declare that they have no relevant conflicts of interest.

Human and Animal Rights and Informed Consent

Any articles contained in this article performed by the authors were performed following Institutional Review Board (IRB) and Institutional Animal Care and Use Committee (IACUC) approval, as listed in the respective articles.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stem Cells in Orthopaedic Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hevesi, M., LaPrade, M., Saris, D.B.F. et al. Stem Cell Treatment for Ligament Repair and Reconstruction. Curr Rev Musculoskelet Med 12, 446–450 (2019). https://doi.org/10.1007/s12178-019-09580-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-019-09580-4

Keywords

Navigation