Lumbar Disc Herniation


Purpose of Review

Substantial advancements have been made in the cause, diagnosis, imaging, and treatment options available for patients with lumbar disc herniation (LDH). We examined the current evidence and highlight the concepts on the frontline of discovery in LDH.

Recent Findings

There are a myriad of novel etiologies of LDH detailed in recent literature including inflammatory factors and infectious microbes. In the clinical setting, recent data focuses on improvements in computer tomography as a diagnostic tool and non-traditional injection options including tumor necrosis alpha inhibitors and platelet-rich plasma. Operative treatment outcomes have focused on minimally invasive endoscopic approaches and demonstrated robust 5-year post-operative outcomes.


Advances in the molecular etiology of LDH will continue to drive novel treatment options. The role of endoscopic treatment for LDH will continue to evolve. Further research into10-year outcomes will be necessary as this surgical approach continues to gain widespread popularity.

This is a preview of subscription content, access via your institution.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354(9178):581–5.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Martin BI, Deyo RA, Mirza SK, et al. Expenditures and health status among adults with back and neck problems. JAMA. 2008;299(6):656.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Kadow T, Sowa G, Vo N, Kang JD. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res. 2015;473(6):1903–12.

    Article  PubMed  Google Scholar 

  4. 4.

    Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The molecular basis of intervertebral disc degeneration. Spine J. 2013;13(3):318–30.

    Article  PubMed  Google Scholar 

  5. 5.

    Kalb S, Martirosyan NL, Kalani MYS, Broc GG, Theodore N. Genetics of the degenerated intervertebral disc. World Neurosurg. 2012;77(3–4):491–501.

    Article  PubMed  Google Scholar 

  6. 6.

    Urban JPG, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5(3)

  7. 7.

    Brayda-Bruno M, Tibiletti M, Ito K, et al. Advances in the diagnosis of degenerated lumbar discs and their possible clinical application. Eur Spine J. 2014;23(SUPPL. 3):315–23.

    Article  Google Scholar 

  8. 8.

    Colombier P, Clouet J, Hamel O, Lescaudron L, Guicheux J. The lumbar intervertebral disc: from embryonic development to degeneration. Jt Bone Spine. 2014;81(2):125–9.

    Article  Google Scholar 

  9. 9.

    Adams MA. Intervertebral disc tissues. In: Mechanical properties of aging soft tissues; 2015. p. 7–35.

    Google Scholar 

  10. 10.

    Mayer JE, Iatridis JC, Chan D, Qureshi SA, Gottesman O, Hecht AC. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 2013;13(3):299–317.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Martirosyan NL, Patel AA, Carotenuto A, et al. Genetic alterations in intervertebral disc disease. Front Surg. 2016;3(November):1–15.

    Google Scholar 

  12. 12.

    Janeczko Ł, Janeczko M, Chrzanowski R, Zieliński G. The role of polymorphisms of genes encoding collagen IX and XI in lumbar disc disease. Neurol Neurochir Pol. 2014;48(1):60–2.

    PubMed  Google Scholar 

  13. 13.

    • Hoffman H, Choi AW, Chang V, et al. Aquaporin-1 expression in herniated human lumbar intervertebral discs. Glob Spine J. 2017;7(2):133–40. This new-found association between aquaporin-1 expression and radiologic findings in lumbar disc herniation provides a new avenue of investigation regarding the etiology of herniation symptoms

    Article  Google Scholar 

  14. 14.

    Lama P, Le Maitre CL, Dolan P, Tarlton JF, Harding IJ, Adams MA. Do intervertebral discs degenerate before they herniate, or after? Bone Jt J. 2013;95 B(8):1127–33.

    Article  Google Scholar 

  15. 15.

    Lotz JC, Chin JR. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Phila Pa 1976). 2000;25(12):1477–83.

    CAS  Article  Google Scholar 

  16. 16.

    LOTZ JC, COLLIOU OK, Chin JRJ, DUNCAN NA, Liebenberg E. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine (Phila Pa 1976). 1998;23(23):2493–506.

    CAS  Article  Google Scholar 

  17. 17.

    • Paul CPL, de Graaf M, Bisschop A, et al. Static axial overloading primes lumbar caprine intervertebral discs for posterior herniation. PLoS One. 2017:1–23. The specific association of static axial overloading with posterior herniation provides a link between certain lifestyle behaviors and a particular herniation subtype. Behavioral changes may be able to reduce the incidence of posterior herniations.

  18. 18.

    Kobayashi S, Takeno K, Yayama T, Baba H. Pathomechanisms of sciatica in lumbar disc herniation effect of periradicular adhesive tissue on electrophysiological values by an intraoperative straight leg raising test. Spine (Phila Pa 1976). 2010;35(22):2004–14.

    Article  Google Scholar 

  19. 19.

    O’Donnell J, O’Donnell A. Prostaglandin E2 content in herniated lumbar disc disease.

  20. 20.

    Willburger R, Wittenberg R. Prostaglandin release from lumbar disc and facet joint tissue. Spine (Phila Pa 1976). 1994;19.

  21. 21.

    Ohtori S, Inoue G, Eguchi Y, et al. Tumor necrosis factor-α-immunoreactive cells in nucleus pulposus in adolescent patients with lumbar disc herniation. Spine (Phila Pa 1976). 2013;38(6):459–62.

    Article  Google Scholar 

  22. 22.

    Kraychete DC, Rioko KS, Adriana Macado I, Bacellar O, Carvalho EM. Serum cytokine levels in patients with chronic low back pain due to herniated disc: analytical cross-sectional study. Sao Paulo Med J. 2010;128(5):259–62.

    Article  PubMed  Google Scholar 

  23. 23.

    • Liu Y, Wei J, Zhao Y, Zhang Y, Han Y, Chen B. Follistatin-like protein 1 promotes inflammatory reactions in nucleus pulposus cells by interacting with the MAPK and NF κ B signaling pathways. Oncotarget. 2017. The discovered involvement of FSTL1 in the nucleus pulposus inflammatory pathway elaborates on upstream pathways that lead to COX-2 upregulation, and provides a possible avenue for the development of non-operative treatment of inflammation-related symptoms in patients.

  24. 24.

    • Albert HB, Sorensen JS, Christensen BS, Manniche C. Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J. 2013;22(4):697–707. Improvement of lower back pain after long-term antibiotic treatment provides strong support for a role of P. acnes in symptom etiology. Moreover, it suggests another possible non-operative treatment to explore: anti-anaerobe antibiotics

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Stirling A, Worthington T, Rafiq M, Lambert PA, Elliott TSJ. Association between sciatica and Propionibacterium acnes. Lancet. 2001;357(9273):2024–5.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Capoor MN, Ruzicka F, Machackova T, et al. Prevalence of Propionibacterium acnes in intervertebral discs of patients undergoing lumbar microdiscectomy: a prospective cross-sectional study. PLoS One. 2016:1–12.

  27. 27.

    Aghazadeh J, Salehpour F, Ziaeii E, Javanshir N. Modic changes in the adjacent vertebrae due to disc material infection with Propionibacterium acnes in patients with lumbar disc herniation. Eur Spine J. 2016;

  28. 28.

    Chen Z, Zheng Y, Yuan Y, et al. Modic changes and disc degeneration caused by inoculation of Propionibacterium acnes inside intervertebral discs of rabbits: a pilot study. Biomed Res Int. 2016;2016.

  29. 29.

    Coscia MF, Denys GA, Wack MF. Propionibacterium acnes, coagulase-negative Staphylococcus, and the “biofilm-like” intervertebral disc. Spine (Phila Pa 1976). 2016;41(24):1860–5.

    Article  Google Scholar 

  30. 30.

    Cuesta A, Del Valle ME, García-Suárez O, et al. Acid-sensing ion channels in healthy and degenerated human intervertebral disc. Connect Tissue Res. 2014;55(3):197–204.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    • Kobayashi Y, Sekiguchi M, Konno S. Effect of an acid-sensing ion channels inhibitor on pain-related behavior by nucleus pulposus applied on the nerve root in rats. Spine (Phila Pa 1976). 2017. Improved pain symptoms with blockade of ASICs solidifies the role of acidity in sciatica etiology. Furthermore, ASICS may be a novel target for non-operative treatment of pain in lumbar disc herniation.

  32. 32.

    Liu J, Tao H, Wang H, et al. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration. Stem Cells Dev. 2017;26(12):901–11.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Vroomen P, de Krom M, Wilmink J, Kester A, Knottnerus J. Diagnostic value of history and physical examination in patients suspected of lumbosacral nerve root compression. J Neurol Neurosurg Psychiatry. 2002;72(5):630–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Vucetic N, Svennson O. Physical signs in lumbar disc hernia. Clin Orthop Relat Res. 1996.

  35. 35.

    Nachemson A. Disc pressure measurements. Spine (Phila Pa 1976). 1981;6(1).

  36. 36.

    Rainville J, Lopez E. Comparison of radicular symptoms caused by lumbar disc herniation and lumbar spinal stenosis in the elderly. Spine (Phila Pa 1976). 2013;38(15):1282–7.

    Article  Google Scholar 

  37. 37.

    Petersen T, Laslett M, Juhl C. Clinical classification in low back pain: best-evidence diagnostic rules based on systematic reviews. BMC Musculoskelet Disord. 2017;18(1):188.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    • Krishnan V, Rajasekaran S, Aiyer SN. Clinical and radiological factors related to the presence of motor deficit in lumbar disc prolapse: a prospective analysis of 70 consecutive cases with neurological deficit. Eur Spine J. 2017. This is the first time that a risk profile with good sensitivity and specificity for cauda equina syndrome has been established for lumbar disc herniation patients. Those who meet criteria can be better monitored to prevent permanent motor deficit in these patients .

  39. 39.

    Kreiner DS, Hwang SW, Easa JE, et al. An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy. Spine J. 2014;14(1):180–91.

    Article  PubMed  Google Scholar 

  40. 40.

    Kim KY, Kim YT, Lee CS, Kang JS, Kim YJ. Magnetic resonance imaging in the evaluation of the lumbar herniated intervertebral disc. Int Orthop. 1993;17(4):241–4.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Messner A, Stelzeneder D, Trattnig S, et al. Does T2 mapping of the posterior annulus fibrosus indicate the presence of lumbar intervertebral disc herniation? A 3. 0 Tesla magnetic resonance study. Eur Spine J. 2017;26:877–83.

    Article  PubMed  Google Scholar 

  42. 42.

    Wu W, Liang J, Ru N, et al. Microstructural changes in compressed nerve. Spine (Phila Pa 1976). 2016;41(11):661–6.

    Article  Google Scholar 

  43. 43.

    Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1):193–9.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Yu LP, Qian WW, Yin GY, Ren YX, Hu ZY. MRI assessment of lumbar intervertebral disc degeneration with lumbar degenerative disease using the Pfirrmann grading systems. PLoS One. 2012;7(12):1–7.

    Google Scholar 

  45. 45.

    Janssen ME, Bertrand SL, Joe C, Levine MI. Lumbar herniated disk disease: comparison of MRI, myelography, and post-myelographic CT scan with surgical findings. Orthopedics. 1994;17(2):121–7.

    CAS  PubMed  Google Scholar 

  46. 46.

    Notohamioridjo S, Stahl R, Braunagel M, et al. Diagnostic accuracy of contemporary multidetector computed tomography (MDCT) for the detection of lumbar disc herniation. Eur Radiol. 2016;

  47. 47.

    Gugliotta M, Costa BR, Dabis E, et al. Surgical versus conservative treatment for lumbar disc herniation: a prospective cohort study. BMJ Open 2016:1–7.

  48. 48.

    Wong J, Cote P, Sutton DA, et al. Clinical practice guidelines for the noninvasive management of low back pain: a systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. Eur J Pain. 2017;21:201–16.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    • Manchikanti L, Pampati V, Benyamin RM, Hirsch JA. Cost utility analysis of lumbar interlaminar epidural injections in the treatment of lumbar disc herniation, central spinal stenosis, and axial or discogenic low back pain. Pain Physician. 2017:219–228. The finding of strong QALY benefit in patients receiving intralaminar epidural injections supports the continued use of this non-operative treatment option.

  50. 50.

    Kepes ER, Duncalf D. Treatment of backache with spinal injections of local anesthetics, spinal and systemic steroids. A review. Pain. 1985;22(1):33–47.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Carette S, Leclaire R, Marcoux S, et al. Epidural corticosteroid injections for sciatica due to herniated nucleus pulposus. N Engl J Med. 1997;336:1634–40.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Ackerman WE, Ahmad M. The efficacy of lumbar epidural steroid injections in patients with lumbar disc herniations. Int Anesth Res Soc. 2007;104(5):1217–22.

    Google Scholar 

  53. 53.

    • Altun I, Yuksel KZ. Impact of position on efficacy of caudal epidural injection for low back pain and radicular leg pain due to central spinal stenosis and lumbar disc hernia. J Korean Neurosurg Soc. 2017;60(2):205–10. Highlights benefits of performing injections in the lateral decubitus position as opposed to prone position. This provides patients with better relief at follow-up

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kim J, Hur JW, Ph D, et al. Surgery versus nerve blocks for lumbar disc herniation: quantitative analysis of radiological factors as a predictor for successful outcomes. J Korean Neurosurg Soc. 2016;59(5):478–84.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Freeman BJC, Ludbrook GL, Hall S, et al. Randomized, double-blind, placebo-controlled, trial of transforaminal epidural etanercept for the treatment of symptomatic lumbar disc herniation. Spine (Phila Pa 1976). 2013;38(23):1986–94.

    Article  Google Scholar 

  56. 56.

    Korhonen T, Karppinen J, Malmivaara A, et al. Efficacy of infliximab for disc herniation-induced sciatica: one-year follow-up. Spine (Phila Pa 1976). 2004;29(19):2115–9.

    Article  Google Scholar 

  57. 57.

    Cohen SP, Wenzell D, Hurley RW, et al. A double-blind, placebo-controlled, dose response pilot study evaluating intradiscal etanercept in patients with chronic discogenic low back pain or lumbosacral radiculopathy. Anesthesiology. 2007;107(1):99–105.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Shin J, Lee ÃJ, Lee ÃYJ, et al. Long-term course of alternative and integrative therapy for lumbar disc herniation and risk factors for surgery. Spine (Phila Pa 1976). 2016;41(16):955–63.

    Article  Google Scholar 

  59. 59.

    Zhong M, Liu JT, Jiang H, Mi W, Yu P-FCL, Xue RR. Incidence of spontaneous resorption of lumbar disc herniation: a meta-analysis. Pain Physician. 2017;6:45–52.

    Google Scholar 

  60. 60.

    Isner-Horobeti M-E, Dufour SP, Schaeffer M, et al. High-force versus low-force lumbar traction in acute lumbar sciatica due to disc herniation: a preliminary randomized trial. J Manip Physiol Ther. 2016;39(9):645–54.

    Article  Google Scholar 

  61. 61.

    Jewell DV, Riddle DL. Interventions that increase or decrease the likelihood of a meaningful improvement in physical health in patients with sciatica. Phys Ther. 2005;85(11):1139–50.

    PubMed  Google Scholar 

  62. 62.

    Thackeray A, Fritz J, Lurie J, Zhao W, Weinstein J. Nonsurgical treatment choices by individuals with lumbar intervertebral disc herniation in the United States: associations with long-term outcomes. Am J Phys Med Rehabil. 2016:1–8.

  63. 63.

    Wang S, Rui Y, Tan Q, Wang C. Enhancing intervertebral disc repair and regeneration through biology: platelet-rich plasma as an alternative strategy. Arthritis Res Ther. 2013;15.

  64. 64.

    Basso M, Cavagnaro L, Zanirato A, et al. What is the clinical evidence on regenerative medicine in intervertebral disc degeneration ? Musculoskelet Surg. 2017;

  65. 65.

    Levi D, Horn S, Tyszko S, Levin J, Hecht-Leavitt C, Walko E. Intradiscal platelet-rich plasma injection for chronic discogenic low back pain: preliminary results from a prospective trial. Pain Med. 2015:pnv053.

  66. 66.

    Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, et al. Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. PM R. 2016;8(1):1–10.

    Article  PubMed  Google Scholar 

  67. 67.

    Pettine K, Suzuki R, Sand T, Murphy M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int Orthop. 2016;40(1):135–40.

    Article  PubMed  Google Scholar 

  68. 68.

    Weinstein JN, Tosteson TD, Lurie JD, et al. Surgical vs nonoperative treatment for lumbar disk herniation. JAMA. 2006;296(20):2441.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Atlas SJ, Deyo RA, Keller RB, Chapin AM, Patrick DL, Long JM, et al. The Maine lumbar spine study part II: 1-year outcomes of surgical and non-surgical management of sciatica. Spine (Phila Pa 1976). 1996;21(15):1777–86.

    CAS  Article  Google Scholar 

  70. 70.

    Osterman H, Seitsalo S, Karppinen J, Malmivaara A. Effectiveness of microdiscectomy for lumbar disc herniation. Spine (Phila Pa 1976). 2006;31(21):2409–14.

    Article  Google Scholar 

  71. 71.

    Ademi Z, Gloy V, Glinz D, et al. Cost-effectiveness of primarily surgical versus primarily conservative treatment of acute and subacute radiculopathies due to intervertebral disc herniation from the Swiss perspective. Swiss Med Wkly. 2016:1–14.

  72. 72.

    • Oba H, Takahashi J, Tsutsumimoto T, et al. Predictors of improvement in low back pain after lumbar decompression surgery: prospective study of 140 patients. J Orthop Sci. 2017:6–11. The identification of pre-operative factors that are associated with improved discectomy outcomes may aid in selecting patients who are most likely to improve from surgical intervention.

  73. 73.

    Tschugg A, Lener S, Hartmann S, et al. Preoperative sport improves the outcome of lumbar disc surgery: a prospective monocentric cohort study. Neurosurg Rev. 2017;

  74. 74.

    Wilson CA, Roffey DM, Chow D, Alkherayf F, Wai EK. A systematic review of preoperative predictors for postoperative clinical outcomes following lumbar discectomy. Spine J. 2016;16(11):1413–22.

    Article  PubMed  Google Scholar 

  75. 75.

    Hsu HT, Chang SJ, Yang SS, Chai CL. Learning curve of full-endoscopic lumbar discectomy. Eur Spine J. 2013;22(4):727–33.

    Article  PubMed  Google Scholar 

  76. 76.

    Cahill KS, Levi AD, Cummock MD, Liao W, Wang MY. A comparison of acute hospital charges after tubular versus open microdiskectomy. World Neurosurg. 2013;80(1–2):208–12.

    Article  PubMed  Google Scholar 

  77. 77.

    Bai J, Zhang W, Wang Y, et al. Application of transiliac approach to intervertebral endoscopic discectomy in L5/S1 intervertebral disc herniation. Eur J Med Res. 2017;22(14):4–13.

    Google Scholar 

  78. 78.

    Tonosu J, Oshima Y, Shiboi R, Hayashi A, Takano Y, Koga H. Consideration of proper operative route for interlaminar approach for percutaneous endoscopic lumbar discectomy. J Spine Surg. 2016;2(4):281–8. 10.21037/jss.2016.11.05.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Phan K, Xu J, Schultz K, et al. Full-endoscopic versus micro-endoscopic and open discectomy: a systematic review and meta-analysis of outcomes and complications. Clin Neurol Neurosurg. 2017;154:1–12.

    Article  PubMed  Google Scholar 

  80. 80.

    Overdevest G, Peul WC, Brand R, et al. Tubular discectomy versus conventional microdiscectomy for the treatment of lumbar disc herniation: Two year results of a double-blinded randomised trial. Acta Neurochir. 2010;152(4):747.

    Google Scholar 

  81. 81.

    Choi K, Lee DC, Shim H, Shin S, Park C. A strategy of percutaneous endoscopic lumbar discectomy for migrated disc herniation. World Neurosurg. 2017;99:259–66.

    Article  PubMed  Google Scholar 

  82. 82.

    Soman SM, Modi JV, Chokshi J. Feasibility of endoscopic discectomy by inter laminar approach at a high volume tertiary public hospital in a developing country. J Spine Surg. 2017;3(1):38–43.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Li Z, Hou S, Shang W, Song K, Zhao H. Modified percutaneous lumbar foraminoplasty and percutaneous endoscopic lumbar discectomy: instrument design, technique notes, and 5 years follow-up. Pain Physician. 2017;20:85–98.

    Google Scholar 

  84. 84.

    • Tu Z, Li YW, Wang B, et al. Clinical outcome of full-endoscopic interlaminar discectomy for single-level lumbar disc herniation: a minimum of 5-year follow-up. Pain Physician. 2017;(3):425–430. Demonstrates good outcomes for interlaminar discectomy conducted entirely endoscopically. There is high potential for successfully minimally invasive surgery for single-level disc herniation.

  85. 85.

    Eun SS, Lee SH, Sabal LA. Long-term follow-up results of percutaneous endoscopic lumbar discectomy. Pain Physician. 2016;19:1161–6.

    Google Scholar 

  86. 86.

    Yao Y, Liu H, Zhang H, et al. Risk factors for recurrent herniation after percutaneous endoscopic lumbar discectomy. World Neurosurg. 2017;100:1–6.

    Article  PubMed  Google Scholar 

  87. 87.

    Hu Z, Li X, Cui J, et al. Significance of preoperative planning software for puncture and channel establishment in percutaneous endoscopic lumbar DISCECTOMY: a study of 40 cases. Int J Surg. 2017;41:97–103.

    Article  PubMed  Google Scholar 

  88. 88.

    Choi K, Kim J, Lee C. Outcome of decompression alone for foraminal/extraforaminal entrapment of L5 nerve root through Wiltse paraspinal approach. Clin Spine Surg. 2016:1–7.

  89. 89.

    Wiltse L, Spencer C. New uses and refinements of the paraspinal approach to the lumbar spine. Spine (Phila Pa 1976). 1988;13(6).

  90. 90.

    Habiba S, Nygaard ØP, Brox JI, Hellum C, Austevoll IM, Solberg TK. Risk factors for surgical site infections among 1,772 patients operated on for lumbar disc herniation: a multicentre observational registry-based study. Spine (Phila Pa 1976). 2017;

  91. 91.

    Seavey JG, Balazs GC, Steelman T, Gwinn DE, Wagner SC. The effect of preoperative lumbar epidural corticosteroid injection on post-operative infection rate in patients undergoing single-level lumbar decompression. Spine J. 2017;

  92. 92.

    Kotil K. Closed drainage versus non-drainage for single-level lumbar disc surgery: relationship between epidural hematoma and fibrosis. Asian Spine J. 2016;10(6):1072–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Murphy ME, Hakim JS, Kerezoudis P, et al. Micro vs. macrodiscectomy: does use of the microscope reduce complication rates? Clin Neurol Neurosurg. 2017;152:28–33.

    Article  PubMed  Google Scholar 

  94. 94.

    Puvanesarajah V, Hassanzadeh H. The true cost of a dural tear. Spine (Phila Pa 1976). 2017;42(10):770–6.

    Article  Google Scholar 

  95. 95.

    Shin B-J. Risk factors for recurrent lumbar disc herniations. Asian Spine J. 2014;8(2).

  96. 96.

    Huang W, Han Z, Liu J, Yu L, Yu X. Risk factors for recurrent lumbar disc herniation. Medicine (Baltimore). 2016;95(2):1–10.

    Google Scholar 

  97. 97.

    Cinotti G, Roysam GS, Eisenstein SM, Postacchini F. Ipsilateral recurrent lumbar disc herniation. A prospective, controlled study. J Bone Jt Surg. 1993;80-B:825–32.

    Google Scholar 

  98. 98.

    Kim K, Park S, Kim Y. Disc height and segmental motion as risk factors for recurrent lumbar disc herniation. Spine (Phila Pa 1976). 2009;34(24):2674–8.

    Article  Google Scholar 

  99. 99.

    Belykh E, Krutko AV, Baykov ES, Giers MB, Preul MC, Byvaltsev VA. Preoperative estimation of disc herniation recurrence after microdiscectomy: predictive value of a multivariate model based on radiographic parameters. Spine J. 2017;17(3):390–400.

    Article  PubMed  Google Scholar 

  100. 100.

    Hegarty D, Shorten G. Multivariate prognostic modeling of persistent pain following lumbar discectomy. Pain Physician. 2012;15(5):421.

    PubMed  Google Scholar 

  101. 101.

    Carragee EJ, Han MY, Yang B, Kim DH, Kraemer H, Billys J. Activity restrictions after posterior lumbar discectomy: a prospective study of outcomes in 152 cases with no postoperative restrictions. Spine (Phila Pa 1976). 1999;24(22):2346–51.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Brian J. Neuman.

Ethics declarations

Conflict of Interest

Raj M. Amin and Nicholas S. Andrade declare that they have no conflict of interest.

Brian J. Neuman reports grants from Depuy Synthes, outside of the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Treatment of Lumbar Degenerative Pathology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amin, R.M., Andrade, N.S. & Neuman, B.J. Lumbar Disc Herniation. Curr Rev Musculoskelet Med 10, 507–516 (2017).

Download citation


  • Lumbar disc herniation
  • Diagnosis of lumbar disc herniation
  • Non-operative treatment of lumbar disc herniation
  • Operative treatment of lumbar disc herniation
  • Minimally invasive discectomy
  • Endoscopic discectomy