Skip to main content

Advertisement

Log in

Anterior cruciate ligament reconstruction in skeletally immature patients

  • Pediatric Orthopedics (B Heyworth, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

The management of pediatric patients with an anterior cruciate ligament (ACL) tear can be a challenging endeavor for physicians, athletic trainers, coaches, and parents alike. In particular, the significant longitudinal growth that arises from the physes about the knee creates a unique set of circumstances that must be considered in this patient population. The purpose of this review is to provide a summary of the most recent current literature for the management of skeletally immature patients with an ACL tear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Kannus PEKKA, Jarvinen MARKKU. Knee ligament injuries in adolescents. eight year follow-up of conservative management. Bone Joint J. 1988;70(5):772–6.

    CAS  Google Scholar 

  2. Graf BK et al. Anterior cruciate ligament tears in skeletally immature patients: meniscal pathology at presentation and after attempted conservative treatment. Arthroscop: J Arthroscop Relat Surg. 1992;8(2):229–33.

    Article  CAS  Google Scholar 

  3. Drongowski RA, Coran AG, Wojtys EM. Predictive value of meniscal and chondral injuries in conservatively treated anterior cruciate ligament injuries. Arthroscop: J Arthroscop Relat Surg. 1994;10(1):97–102.

    Article  CAS  Google Scholar 

  4. Pressman AE, Letts RM, Jarvis JG. Anterior cruciate ligament tears in children: an analysis of operative versus nonoperative treatment. J Pediatr Orthop. 1997;17(4):505–11.

    CAS  PubMed  Google Scholar 

  5. Millett PJ, Willis AA, Warren RF. Associated injuries in pediatric and adolescent anterior cruciate ligament tears: does a delay in treatment increase the risk of meniscal tear? Arthroscop: J Arthroscop Relat Surg. 2002;18(9):955–9.

    Article  Google Scholar 

  6. Anderson AF, Anderson CN. Correlation of meniscal and articular cartilage injuries in children and adolescents with timing of anterior cruciate ligament reconstruction. Am J Sports Med. 2014;43(2):275–81. doi:10.1177/0363546514559912.

    Article  PubMed  Google Scholar 

  7. Funahashi KM, Moksnes H, Maletis GB, Csintalan RP, Inacio MCS, Funahashi TT. Anterior cruciate ligament injuries in adolescents with open physis: effect of recurrent injury and surgical delay on meniscal and cartilage injuries. Am J Sports Med. 2014;42(5):1068–73. doi:10.1177/0363546514525584. This is the first study to report on ACL tear incidence rate in the pediatric population and also to suggest no association between time to surgery and meniscal or cartilage injury.

  8. Vavken P, Tepolt FA, Kocher MS. Concurrent meniscal and chondral injuries in pediatric and adolescent patients undergoing ACL reconstruction. J Pediatr Orthop. 2016. doi:10.1097/BPO.0000000000000777.

    Google Scholar 

  9. Arbes S, Resinger C, Vecsei V, et al. The functional outcome of total tears of the anterior cruciate ligament (ACL) in the skeletally immature patient. Int Orthop. 2007;31(4):471–5.

    Article  PubMed  Google Scholar 

  10. Bollen SR, Scott BW. Rupture of the anterior cruciate ligament—a quiet epidemic? Injury. 1996;27(6):407–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sampson NR, Beck NA, Baldwin KD, Ganley TJ, Wells L. Knee injuries in children and adolescents: has there been an increase in ACL and mensicus tears in recent years. Boston: American Academy of Pediatrics National Conference and Exhibition; 2011.

    Google Scholar 

  12. Werner BC, Yang S, Looney AM, Gwathmey FW. Trends in pediatric and adolescent anterior cruciate ligament injury and reconstruction. J Pediatr Orthop. 2016;36(5):447–52. doi:10.1097/BPO.0000000000000482.

    Article  PubMed  Google Scholar 

  13. Dodwell ER, LaMont LE, Green DW, Pan TJ, Marx RG, Lyman S. 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am J Sports Med. 2014;42(3):675–80. doi:10.1177/0363546513518412.

    Article  PubMed  Google Scholar 

  14. Guenther ZD, Swami V, Dhillon SS, Jaremko JL. Meniscal injury after adolescent anterior cruciate ligament injury: how long are patients at risk? Clin Orthop Relat Res. 2014;472(3):990–7. doi:10.1007/s11999-013-3369-9.

    Article  PubMed  Google Scholar 

  15. Ramski DE et al. Anterior cruciate ligament tears in children and adolescents a meta-analysis of nonoperative versus operative treatment. Am J Sports Med. 2013: 0363546513510889.

  16. Moksnes H, Engebretsen L, Eitzen I, Risberg MA. Functional outcomes following a non-operative treatment algorithm for anterior cruciate ligament injuries in skeletally immature children 12 years and younger. a prospective cohort with 2 years follow-up. Br J Sports Med. 2013;47(8):488–94. doi:10.1136/bjsports-2012-092066.

    Article  PubMed  Google Scholar 

  17. Moksnes H, Engebretsen L, Risberg MA. Prevalence and incidence of newmeniscus and cartilage injuries after a nonoperative treatment algorithm for ACLtears in skeletally immature children: a prospective MRI study. Am J Sports Med. 2013;41(8):1771–9. doi:10.1177/0363546513491092.

    Article  PubMed  Google Scholar 

  18. Domzalski M, Grzelak P, Gabos P. Risk factors for Anterior Cruciate Ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop. 2010;34:703–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim HK, Laor T, Shire NJ, Bean JA, Dardzinski BJ. Anterior and posterior cruciate ligaments at different patient ages: MR imaging findings. Radiology. 2008;247:826–35.

    Article  PubMed  Google Scholar 

  20. Kocher MS, Mandiga R, Klingele K, Bley L, Micheli LJ. Anterior cruciate ligament injury versus tibial spine fracture in the skeletally immature knee: a comparison of skeletal maturation and notch width index. J Pediatr Orthop. 2004;24:185–8.

    Article  PubMed  Google Scholar 

  21. Shea KG, Apel PJ, Pfeiffer RP, Showalter LD, Traughber PD. The tibial attachment of the anterior cruciate ligament in children and adolescents: analysis of magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2002;10:102–8.

    Article  PubMed  Google Scholar 

  22. Edmonds EW, Bathen M, Bastrom TP. Normal parameters of the skeletally immature knee: developmental changes on magnetic resonance imaging. J Pediatr Orthop. 2015;35(7):712–20. doi:10.1097/BPO.0000000000000375. This study provides normative parameters for the skeletally immature knee which can aid in the identifying abnormal findings on MRI by sex and age, particularly with regard to ACL anatomy.

  23. Tuca M, Hayter C, Potter H, Marx R, Green DW. Anterior cruciate ligament and intercondylar notch growth plateaus prior to cessation of longitudinal growth: an MRI observational study. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):780–7. doi:10.1007/s00167-016-4021-5.

    Article  PubMed  Google Scholar 

  24. Swami VG, Mabee M, Hui C, Jaremko JL. Three-dimensional intercondylar notch volumes in a skeletally immature pediatric population: a magnetic resonance imaging-based anatomic comparison of knees with torn and intact anterior cruciate ligaments. Arthroscopy. 2013;29(12):1954–62. doi:10.1016/j.arthro.2013.08.031.

    Article  PubMed  Google Scholar 

  25. Swami VG, Mabee M, Hui C, Jaremko JL. MRI anatomy of the tibial ACL attachment and proximal epiphysis in a large population of skeletally immature knees: reference parameters for planning anatomic physeal-sparing ACL reconstruction. Am J Sports Med. 2014;42(7):1644–51. doi:10.1177/0363546514530293. This study provides normative parameters for the tibial ACL and epipiphyseal anatomy, which is helpful in identifying optimal surgical candidates and techniques.

  26. Davis DL, Chen L, Young ST. Evaluation of epiphyses in the skeletally immature knee using magnetic resonance imaging: a pilot study to analyze parameters for anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(7):1579–85. doi:10.1177/0363546513486770.

    Article  PubMed  Google Scholar 

  27. Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J Bone Joint Surg Am. 2005;87(11):2371–9.

    PubMed  Google Scholar 

  28. Anderson AF. Transepiphyseal replacement of the anterior cruciate ligament using quadruple hamstring grafts in skeletally immature patients. J Bone Joint Surg Am. 2004;86(Pt 2 Suppl 1):201–9.

    Article  PubMed  Google Scholar 

  29. Lawrence JT, Bowers AL, Belding J, Cody SR, Ganley TJ. All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients. Clin Orthop Relat Res. 2010;468(7):1971–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McCarthy MM et al. All-epiphyseal, all-inside anterior cruciate ligament reconstruction technique for skeletally immature patients. Arthroscop Tech. 2012;1.2:e231–9.

    Article  Google Scholar 

  31. Fabricant PD, Jones KJ, Delos D, Cordasco FA, Marx RG, Pearle AD, Green DW. Reconstruction of the anterior cruciate ligament in the skeletally immature athlete: a review of current concepts: AAOS exhibit selection. J Bone Joint Surg. Am Vol. 2013; 95(5). doi:10.2106/jbjs.l.00772.

  32. Janarv P-M, Wikström B, Hirsch G. The influence of transphyseal drilling and tendon grafting on bone growth: an experimental study in the rabbit. J Pediatr Orthop. 1998;18(2):149–54.

    CAS  PubMed  Google Scholar 

  33. Cruz AI. Transphyseal ACL reconstruction in skeletally immature patients does independent femoral tunnel drilling place the physis at greater risk compared with transtibial drilling? Orthopaed J Sports Med. 2016;4.6:2325967116650432.

    Google Scholar 

  34. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Palo Alto: Stanford University Press; 1959.

    Google Scholar 

  35. Heyworth BE, Osei DA, Fabricant PD, Schneider R, Doyle SM, Green DW, et al. The shorthand bone age assessment: a simpler alternative to current methods. J Pediatr Orthop. 2013;33(5):569–74. Introduces novel, simple, and efficient method of determining skeletal age prior to surgical treatment.

  36. Kennedy A et al. Biomechanical evaluation of pediatric anterior cruciate ligament reconstruction techniques. Am J Sports Med. 2011;39(5):964–71.

    Article  PubMed  Google Scholar 

  37. Sena M, Chen J, Dellamaggioria R, Coughlin DG, Lotz JC, Feeley BT. Dynamic evaluation of pivot-shift kinematics in physeal-sparing pediatric anterior cruciate ligament reconstruction techniques. Am J Sports Med. 2013;41(4):826–34. doi:10.1177/0363546513476470.

    Article  PubMed  Google Scholar 

  38. McCarthy MM, Tucker S, Nguyen JT, Green DW, Imhauser CW, Cordasco FA. Contact stress and kinematic analysis of all-epiphyseal and over-the-top pediatric reconstruction techniques for the anterior cruciate ligament. Am J Sports Med. 2013;41(6):1330–9. doi:10.1177/0363546513483269.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Willimon SC, Jones CR, Herzog MM, May KH, Leake MJ, Busch MT. Micheli anterior cruciate ligament reconstruction in skeletally immature youths: a retrospective case series with a mean 3-year follow-up. Am J Sports Med. 2015;43(12):2974–81. doi:10.1177/0363546515608477. First study on clinical outcomes using the physeal sparing iliotibial band reconstruction besides the one by Kocher et al. in 2005.

  40. Cruz AI Jr, Fabricant PD, McGraw M, Rozell JC, Ganley TJ, Wells L. All-Epiphyseal ACL reconstruction in children: review of safety and early complications. J Pediatr Orthop. 2015.

  41. Nawabi DH, Jones KJ, Lurie B, Potter HG, Green DW, Cordasco FA. All-inside, physeal-sparing anterior cruciate ligament reconstruction does not significantly compromise the physis in skeletally immature athletes: a postoperative physeal magnetic resonance imaging analysis. Am J Sports Med. 2014;42(12):2933–40. doi:10.1177/0363546514552994.

    Article  PubMed  Google Scholar 

  42. Akinleye SD, Sewick A, Wells L. All-epiphyseal acl reconstruction: a three-year follow-up. Int J Sports Phys Ther. 2013;8(3):300–10.

    PubMed  PubMed Central  Google Scholar 

  43. McCarthy MM, Graziano J, Green DW, Cordasco FA. All-epiphyseal, all-inside anterior cruciate ligament reconstruction technique for skeletally immature patients. Arthrosc Tech. 2012;1(2):e231–9. doi:10.1016/j.eats.2012.08.005.Print2012Dec.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lykissas MG, Nathan ST, Wall EJ. All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients: a surgical technique using a split tibial tunnel. Arthrosc Tech. 2012;1(1):e133–9. doi:10.1016/j.eats.2012.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Makani A, Franklin CC, Kanj WW, Wells L. All-epiphyseal anterior cruciate ligament reconstruction using fluoroscopic imaging. J Pediatr Orthop B. 2013;22(5):445–9. doi:10.1097/BPB.0b013e328362b8e5.

    Article  PubMed  Google Scholar 

  46. Calvo R, Figueroa D, Gili F, Vaisman A, Mocoçain P, Espinosa M, et al. Transphyseal anterior cruciate ligament reconstruction in patients with open physes: 10-year follow-up study. Am J Sports Med. 2015;43(2):289–94. doi:10.1177/0363546514557939. Longest mean follow-up of any series studying transphyseal reconstruction outcomes with a minimum follow up of 10 years.

  47. Kumar S, Ahearne D, Hunt DM. Transphyseal anterior cruciate ligament reconstruction in the skeletally immature: follow-up to a minimum of sixteen years of age. J Bone Joint Surg Am. 2013;95(1):e1. doi:10.2106/JBJS.K.01707.

    Article  PubMed  Google Scholar 

  48. Kim SJ, Shim DW, Park KW. Functional outcome of transphyseal reconstruction of the anterior cruciate ligament in skeletally immature patients. Knee Surg Relat Res. 2012;24(3):173–9. doi:10.5792/ksrr.2012.24.3.173.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Redler LH, Brafman RT, Trentacosta N, Ahmad CS. Anterior cruciate ligament reconstruction in skeletally immature patients with transphyseal tunnels. Arthroscopy. 2012;28(11):1710–7. doi:10.1016/j.arthro.2012.04.145.

    Article  PubMed  Google Scholar 

  50. Schmale GA, Kweon C, Larson RV, Bompadre V. High satisfaction yet decreased activity 4 years after transphyseal ACL reconstruction. Clin Orthop Relat Res. 2014;472(7):2168–74. doi:10.1007/s11999-014-3561-6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hui C, Roe J, Ferguson D, Waller A, Salmon L, Pinczewski L. Outcome of anatomic transphyseal anterior cruciate ligament reconstruction in tanner stage 1 and 2 patients with open physes. Am J Sports Med. 2012;40(5):1093–8. doi:10.1177/0363546512438508.

    Article  PubMed  Google Scholar 

  52. Kohl S, Stutz C, Decker S, Ziebarth K, Slongo T, Ahmad SS, et al. Mid-term results of transphyseal anterior cruciate ligament reconstruction in children and adolescents. Knee. 2014;21(1):80–5. doi:10.1016/j.knee.2013.07.004.

    Article  PubMed  Google Scholar 

  53. Larson CM, Heikes CS, Ellingson CI, Wulf CA, Giveans RM, Stone RM, et al. Allograft and autograft transphyseal anterior cruciate ligament reconstruction in skeletally immature patients: outcomes and complications. Arthroscop : J Arthroscop Relat Surg : Off Publ Arthroscop Assoc North Am Int Arthroscop Assoc. 2016;32(5):860–7. doi:10.1016/j.arthro.2015.10.014.

    Article  Google Scholar 

  54. Pierce TP, Issa K, Festa A, Scillia AJ, McInerney VK. Pediatric anterior cruciate ligament reconstruction: a systematic review of transphyseal versus physeal-sparing techniques. Am J Sports Med. 2016. doi:10.1177/0363546516638079.

    PubMed  Google Scholar 

  55. Kocher MS et al. Management and complications of anterior cruciate ligament injuries in skeletally immature patients: survey of the Herodicus Society and the ACL Study Group. J Pediatr Orthop. 2002;22(4):452–7.

    PubMed  Google Scholar 

  56. Shifflett GD, Green DW, Widmann RF, Marx RG. Growth arrest following ACL reconstruction with hamstring autograft in skeletally immature patients: a review of 4 cases. J Pediatr Orthop. 2016;36(4):355. doi:10.1097/BPO.0000000000000466.

    Article  PubMed  Google Scholar 

  57. Koch PP, Fucentese SF, Blatter SC. Complications after epiphyseal reconstruction of the anterior cruciate ligament in prepubescent children. Knee Surg Sports Traumatol Arthrosc. 2014.

  58. Zimmerman LJ, Jauregui JJ, Riis JF, Tuten H. Symmetric limb overgrowth following anterior cruciate ligament reconstruction in a skeletally immature patient. J Pediatr Orthopaed B. 2015;24(6):530. doi:10.1097/BPB.0000000000000183.

    Article  Google Scholar 

  59. Collins MJ, Arns TA, Leroux T, Black A, Mascarenhas R, Bach BR, et al. Growth abnormalities following anterior cruciate ligament reconstruction in the skeletally immature patient: a systematic review. Arthroscop : J Arthroscop Relat Surg : Off Publ Arthroscop Assoc North Am Int Arthroscop Assoc. 2016. doi:10.1016/j.arthro.2016.02.025. This is the most comprehensive review in literature assessing growth abnormalities after an ACL reconstruction, reporting limb length discrepancies and angular deformities are not uncommon.

  60. Todd DC, Ghasem AD, Xerogeanes JW. Height, weight, and age predict quadriceps tendon length and thickness in skeletally immature patients. Am J Sports Med. 2015;43(4):945–52. doi:10.1177/0363546515570620.

    Article  PubMed  Google Scholar 

  61. Carey JL, Dunn WR, Dahm DL, Zeger SL, Spindler KP. A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J Bone Joint Surg Am. 2009;91(9):2242–50.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nelson IR, Chen J, Love R, Davis BR, Maletis GB, Funahashi TT. A comparison of revision and rerupture rates of ACL reconstruction between autografts and allografts in the skeletally immature. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):773–9. doi:10.1007/s00167-016-4020-6.

    Article  PubMed  Google Scholar 

  63. Park SS, Dwyer T, Congiusta F, Whelan DB, Theodoropoulos J. Analysis of irradiation on the clinical effectiveness of allogenic tissue when used for primary anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(1):226–35. doi:10.1177/0363546513518004.

    Article  PubMed  Google Scholar 

  64. Kaeding CC, Aros B, Pedroza A, Pifel E, Amendola A, Andrish JT, et al. Allograft versus autograft anterior cruciate ligament reconstruction predictors of failure from a MOON prospective longitudinal cohort. Sports Health: Multidiscipl Approach. 2011;3(1):73–81.

    Article  Google Scholar 

  65. Luo TD, Ashraf A, Dahm DL, Stuart MJ, McIntosh AL. Femoral nerve block is associated with persistent strength deficits at 6 months after anterior cruciate ligament reconstruction in pediatric and adolescent patients. Am J Sports Med. 2015;43(2):331–6. doi:10.1177/0363546514559823.

    Article  PubMed  Google Scholar 

  66. Boyle MJ, Butler RJ, Queen RM. Functional movement competency and dynamic balance after anterior cruciate ligament reconstruction in adolescent patients. J Pediatr Orthop. 2016;36(1):36–41. doi:10.1097/BPO.0000000000000402.

    PubMed  Google Scholar 

  67. Greenberg EM, Greenberg ET, Ganley TJ, Lawrence JT. Strength and functional performance recovery after anterior cruciate ligament reconstruction in preadolescent athletes. Sports Health. 2014;6(4):309–12. doi:10.1177/1941738114537594.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC. Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am J Sports Med. 2015; 0363546515602016.

  69. Samora W, Beran MC, Parikh SN. Intercondylar roof inclination angle: is it a risk factor for ACL tears or tibial spine fractures?. J Pediatr Orthop. 2015.

  70. O’Malley MP, Milewski MD, Solomito MJ, Erwteman AS, Nissen CW. The association of tibial slope and anterior cruciate ligament rupture in skeletally immature patients. Arthroscopy. 2015;31(1):77–82. doi:10.1016/j.arthro.2014.07.019. This study is the first to suggest increased posterior tibial slope as a risk factor for pediatric ACL injury.

  71. Dare DM, Fabricant PD, McCarthy MM, Rebolledo BJ, Green DW, Cordasco FA, et al. Increased lateral tibial slope is a risk factor for pediatric anterior cruciate ligament injury: an MRI-based case–control study of 152 patients. Am J Sports Med. 2015;43(7):1632–9. doi:10.1177/0363546515579182.

    Article  PubMed  Google Scholar 

  72. Shaw KA, Dunoski B, Mardis N, Pacicca D. Knee morphometric risk factors for acute anterior cruciate ligament injury in skeletally immature patients. J Child Orthop. 2015;9(2):161–8. doi:10.1007/s11832-015-0652-1.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Degnan AJ, Maldjian C, Adam RJ, Fu FH, Di Domenica M. Comparison of Insall-Salvati ratios in children with an acute anterior cruciate ligament tear and a matched control population. Am J Roentgenol. 2015;204(1):161–6.

    Article  Google Scholar 

  74. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. The effects of core proprioception on knee injury a prospective biomechanical-epidemiological study. Am J Sports Med. 2007;35(3):368–73.

    Article  PubMed  Google Scholar 

  75. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):1123–30.

    Article  PubMed  Google Scholar 

  76. Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes a prospective study. Am J Sports Med. 2005;33(4):492–501.

    Article  PubMed  Google Scholar 

  77. Ladenhauf HN, Graziano J, Marx RG. Anterior cruciate ligament prevention strategies: are they effective in young athletes–current concepts and review of literature. Curr Opin Pediatr. 2013;25(1):64–71.

    Article  PubMed  Google Scholar 

  78. Herman K, Barton C, Malliaras P, Morrissey D. The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review. BMC Med. 2012;10(1).

  79. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med. 2005;33(7):1003–10. doi:10.1177/0363546504272261.

    Article  PubMed  Google Scholar 

  80. Sadoghi P. Effectiveness of ACL injury prevention training programs. JBJS Am. 2012;94:796–76.

    Article  Google Scholar 

  81. Noyes FR, Sue DBW. Anterior cruciate ligament injury prevention training in female athletes a systematic review of injury reduction and results of athletic performance tests. Sports Health: Multidiscipl Approach. 2012;4(1):36–46.

    Article  Google Scholar 

  82. Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(1):216–24.

    Article  PubMed  Google Scholar 

  83. Swart E, Redler L, Fabricant PD, Mandelbaum BR, Ahmad CS, Wang YC. Prevention and screening programs for anterior cruciate ligament injuries in young athletes: a cost-effectiveness analysis. J Bone Joint Surg Am. 2014;96(9):705–11. doi:10.2106/JBJS.M.00560.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Waldén M, Atroshi I, Magnusson H, Wagner P, Hägglund M. Prevention of acute knee injuries in adolescent female football players: cluster randomised controlled trial. BMJ. 2012;344:e3042.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hägglund M et al. Superior compliance with a neuromuscular training programme is associated with fewer ACL injuries and fewer acute knee injuries in female adolescent football players: secondary analysis of an RCT. Brit J Sports Med. 2013: bjsports-2013.

  86. Holden S et al. Clinical assessment of countermovement jump landing kinematics in early adolescence: sex differences and normative values. Clin Biomech. 2015;30(5):469–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Pennock.

Ethics declarations

Conflict of interest

Michael M. Murphy and Mark Wu declare that they have no conflicts of interest.

Andrew Pennock is a committee member of AOSSM and POSNA. He is on the editorial board for Arthroscopy and is a reviewer for AJSM and JPO.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Orthopedics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennock, A., Murphy, M.M. & Wu, M. Anterior cruciate ligament reconstruction in skeletally immature patients. Curr Rev Musculoskelet Med 9, 445–453 (2016). https://doi.org/10.1007/s12178-016-9367-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-016-9367-2

Keywords

Navigation