Advertisement

Gene and cell therapy for muscle regeneration

  • Roberta Sessa Stilhano
  • Leonardo Martins
  • Sheila Jean McNeill Ingham
  • João Bosco Pesquero
  • Johnny Huard
Muscle Injuries (SJ McNeill Ingham, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Muscle Injuries

Abstract

Skeletal muscle injury and healing are multifactorial processes, involving three steps of healing: (1) degeneration and inflammation, (2) regeneration, and (3) fibrosis. Fibrous tissue hinders the muscle’s complete recovery and current therapies fail in achieving total muscle recovery. Gene and cell therapy (or both) are potential future treatments for severe muscular injuries. Stem cells’ properties associated with growth factors or/and cytokines can improve muscle healing and permit long-term recovery.

Keywords

Gene therapy Cell therapy Muscle injury Fibrosis Stem cell Growth factor 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Roberta Sessa Stilhano, Leonardo Martins, Sheila Jean McNeill Ingham, and João Bosco Pesquero declare that they have no conflict of interest.

Johnny Huard receives consulting fees and royalties from Cook MyoSite Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Baoge L, Van Den Steen E, Rimbaut S, Philips N, Witvrouw E, Almqvist KF, et al. Treatment of skeletal muscle injury: a review. ISRN Orthop. 2012;2012:689012. doi: 10.5402/2012/689012.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84-a(5):822–32.PubMedGoogle Scholar
  3. 3.
    Gharaibeh B, Chun-Lansinger Y, Hagen T, Ingham SJ, Wright V, Fu F, et al. Biological approaches to improve skeletal muscle healing after injury and disease. Birth Defects Res C Embryo Today Rev. 2012;96(1):82–94. doi: 10.1002/bdrc.21005.CrossRefGoogle Scholar
  4. 4.
    Lieber RL, Ward SR. Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol. 2013;305(3):C241–52. doi: 10.1152/ajpcell.00173.2013.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Jarvinen MJ, Lehto MU. The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med (Auckland, NZ). 1993;15(2):78–89.CrossRefGoogle Scholar
  6. 6.
    Paoloni JA, Milne C, Orchard J, Hamilton B. Non-steroidal anti-inflammatory drugs in sports medicine: guidelines for practical but sensible use. Br J Sports Med. 2009;43(11):863–5. doi: 10.1136/bjsm.2009.059980.CrossRefPubMedGoogle Scholar
  7. 7.
    Kay MA, Liu D, Hoogerbrugge PM. Gene therapy. Proc Natl Acad Sci U S A. 1997;94(24):12744–6.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Ponder KP. Vectors in gene therapy. In: Kresina T, editor. An introduction to molecular medicine and gene therapy. New York: Wiley-Liss; 2000. p. 77–112.CrossRefGoogle Scholar
  9. 9.
    Wood KJ, Fry J. Gene therapy: potential applications in clinical transplantation. Exp Rev Mol Med. 1999;1999:1–20. doi: 10.1017/S1462399499000691.Google Scholar
  10. 10.
    Yang JC, Liu J, Yang XW, Tang JG. Gene therapy for diabetic rats by electroporational transfer of naked plasmid with human pre-pro-insulin gene into skeletal muscle. Biotechnol Lett. 2002;24(10):851–5.CrossRefGoogle Scholar
  11. 11.
    Newman CM, Bettinger T. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther. 2007;14(6):465–75. doi: 10.1038/sj.gt.3302925.CrossRefPubMedGoogle Scholar
  12. 12.
    Wagner E, Culmsee C, Boeckle S. Targeting of polyplexes: toward synthetic virus vector systems. Adv Genet. 2005;53PA:333–54. doi: 10.1016/S0065-2660(05)53013-X.CrossRefPubMedGoogle Scholar
  13. 13.
    Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995;92(16):7297–301.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Herweijer H, Wolff JA. Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther. 2007;14(2):99–107. doi: 10.1038/sj.gt.3302891.PubMedGoogle Scholar
  15. 15.
    Zeitelhofer M, Vessey JP, Thomas S, Kiebler M, Dahm R. Transfection of cultured primary neurons via nucleofection. In: Crawley N J et al., Current Protocols in neuroscience / editorial board, Chapter 4:Unit4 32. 2009. doi: 10.1002/0471142301.ns0432s47.
  16. 16.
    Burks TN, Cohn RD. Role of TGF-beta signaling in inherited and acquired myopathies. Skelet Muscle. 2011;1(1):19. doi: 10.1186/2044-5040-1-19.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, et al. Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther:J Am Soc Gene Ther. 2007;15(9):1616–22. doi: 10.1038/sj.mt.6300250.CrossRefGoogle Scholar
  18. 18.
    Chen C, Akerstrom V, Baus J, Lan MS, Breslin MB. Comparative analysis of the transduction efficiency of five adeno associated virus serotypes and VSV-G pseudotype lentiviral vector in lung cancer cells. Virol J. 2013;10:86. doi: 10.1186/1743-422x-10-86.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Zhu J, Li Y, Shen W, Qiao C, Ambrosio F, Lavasani M, et al. Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem. 2007;282(35):25852–63. doi: 10.1074/jbc.M704146200.CrossRefPubMedGoogle Scholar
  20. 20.
    Kota J, Handy CR, Haidet AM, Montgomery CL, Eagle A, Rodino-Klapac LR, et al. Follistatin gene delivery enhances muscle growth and strength in nonhuman primates. Sci Transl Med. 2009;1(6):6ra15. doi: 10.1126/scitranslmed.3000112.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    He B, Tang RH, Weisleder N, Xiao B, Yuan Z, Cai C, et al. Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan-deficient hamsters. Mol Ther J Am Soc Gene Ther. 2012;20(4):727–35. doi: 10.1038/mt.2012.5.CrossRefGoogle Scholar
  22. 22.
    Heydemann A, Ceco E, Lim JE, Hadhazy M, Ryder P, Moran JL, et al. Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest. 2009;119(12):3703–12. doi: 10.1172/jci39845.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.•
    Piccioni A, Gaetani E, Neri V, Gatto I, Palladino M, Silver M, et al. Sonic hedgehog therapy in a mouse model of age-associated impairment of skeletal muscle regeneration. J Gerontol A Biol Sci Med Sci. 2014;69(3):245–52. doi: 10.1093/gerona/glt076. The authors used Shh (Sonic hedgehog) as a therapy for skeletal muscle regeneration of old mice for the first time. This embryonic gene increased muscle regeneration and reduced fibrosis.
  24. 24.
    Sacco A, Doyonnas R, LaBarge MA, Hammer MM, Kraft P, Blau HM. IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. J Cell Biol. 2005;171(3):483–92. doi: 10.1083/jcb.200506123.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Schertzer JD, Lynch GS. Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Ther. 2006;13(23):1657–64. doi: 10.1038/sj.gt.3302817.CrossRefPubMedGoogle Scholar
  26. 26.
    Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A, et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther. 2004;10(5):844–54. doi: 10.1016/j.ymthe.2004.08.007.CrossRefPubMedGoogle Scholar
  27. 27.
    Meirelles Lda S, Nardi NB. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol. 2003;123(4):702–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.PubMedGoogle Scholar
  29. 29.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13. doi: 10.1016/j.stem.2008.07.003.CrossRefPubMedGoogle Scholar
  30. 30.
    Sensebe L, Bourin P, Tarte K. Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther. 2011;22(1):19–26. doi: 10.1089/hum.2010.197.CrossRefPubMedGoogle Scholar
  31. 31.
    Pecanha R, Bagno LL, Ribeiro MB, Robottom Ferreira AB, Moraes MO, Zapata-Sudo G, et al. Adipose-derived stem-cell treatment of skeletal muscle injury. J Bone Joint Surg Am. 2012;94(7):609–17. doi: 10.2106/jbjs.k.00351.CrossRefPubMedGoogle Scholar
  32. 32.
    Motohashi N, Asakura Y, Asakura A. Isolation, culture, and transplantation of muscle satellite cells. J Visual Exp. 2014; 86. doi: 10.3791/50846.
  33. 33.
    Fishman JM, Tyraskis A, Maghsoudlou P, Urbani L, Totonelli G, Birchall MA, et al. Skeletal muscle tissue engineering: which cell to use? Tissue Eng B Rev. 2013;19(6):503–15. doi: 10.1089/ten.TEB.2013.0120.CrossRefGoogle Scholar
  34. 34.
    Bareja A, Billin AN. Satellite cell therapy - from mice to men. Skelet Muscle. 2013;3(1):2. doi: 10.1186/2044-5040-3-2.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Fan Y, Maley M, Beilharz M, Grounds M. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve. 1996;19(7):853–60. doi: 10.1002/(SICI)1097-4598(199607)19:7<853::AID-MUS7>3.0.CO;2-8.CrossRefPubMedGoogle Scholar
  36. 36.
    Lim HJ, Joo S, Oh SH, Jackson JD, Eckman DM, Bledsoe TM, et al. Syngeneic myoblast transplantation improves muscle function in a murine model of X-linked myotubular myopathy. Cell Transplant. 2014. doi: 10.3727/096368914x683494.Google Scholar
  37. 37.
    Gharaibeh B, Lu A, Tebbets J, Zheng B, Feduska J, Crisan M, et al. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc. 2008;3(9):1501–9. doi: 10.1038/nprot.2008.142.CrossRefPubMedGoogle Scholar
  38. 38.
    Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002;157(5):851–64. doi: 10.1083/jcb.200108150.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Ota S, Uehara K, Nozaki M, Kobayashi T, Terada S, Tobita K, et al. Intramuscular transplantation of muscle-derived stem cells accelerates skeletal muscle healing after contusion injury via enhancement of angiogenesis. Am J Sports Med. 2011;39(9):1912–22. doi: 10.1177/0363546511415239.CrossRefPubMedGoogle Scholar
  40. 40.
    Drowley L, Okada M, Beckman S, Vella J, Keller B, Tobita K, et al. Cellular antioxidant levels influence muscle stem cell therapy. Mol Ther J Am Soc Gene Ther. 2010;18(10):1865–73. doi: 10.1038/mt.2010.160.CrossRefGoogle Scholar
  41. 41.
    Urish KL, Vella JB, Okada M, Deasy BM, Tobita K, Keller BB, et al. Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell. 2009;20(1):509–20. doi: 10.1091/mbc.E08-03-0274.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi: 10.1016/j.cell.2006.07.024.CrossRefPubMedGoogle Scholar
  43. 43.
    Salani S, Donadoni C, Rizzo F, Bresolin N, Comi GP, Corti S. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J Cell Mol Med. 2012;16(7):1353–64. doi: 10.1111/j.1582-4934.2011.01498.x.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.•
    Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med. 2012;4(140):140ra189. doi: 10.1126/scitranslmed.3003541. The authors used human induced pluripotent stem cells (iPSC) to treat limb-girdle muscular dystrophy. The iPSC strategy allowed the derivation and propagation, in culture, of a population of MAB-like mesodermal generated from adult somatic cells.
  45. 45.
    Abujarour R, Bennett M, Valamehr B, Lee TT, Robinson M, Robbins D, et al. Myogenic differentiation of muscular dystrophy-specific induced pluripotent stem cells for use in drug discovery. Stem Cells Transl Med. 2014;3(2):149–60. doi: 10.5966/sctm. 2013-0095.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.•
    Distefano G, Ferrari RJ, Weiss C, Deasy BM, Boninger ML, Fitzgerald GK, et al. Neuromuscular electrical stimulation as a method to maximize the beneficial effects of muscle stem cells transplanted into dystrophic skeletal muscle. PLoS One. 2013;8(3):e54922. doi: 10.1371/journal.pone.0054922. This article describes a method to maximize the permanency and effect of muscle stem cells in muscle dystrophy. This is a big advance in the transplatation field.
  47. 47.•
    Park JK, Ki MR, Lee EM, Kim AY, You SY, Han SY, et al. Losartan improves adipose tissue-derived stem cell niche by inhibiting transforming growth factor-beta and fibrosis in skeletal muscle injury. Cell Transplant. 2012;21(11):2407–24. doi: 10.3727/096368912x637055. The maintenance of the cells in their niche after transplantation is a hard challenge. In this work the authors used losartan, an AT1 receptor blocker, to reduce fibrosis and permit long term permanency of the adipose tissue-derived stem cells.
  48. 48.
    Zhao C, Farruggio AP, Bjornson CR, Chavez CL, Geisinger JM, Neal TL, et al. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells. PLoS One. 2014;9(4):e96279. doi: 10.1371/journal.pone.0096279.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(6):1282–9. doi: 10.1177/0363546510395485.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Roberta Sessa Stilhano
    • 1
  • Leonardo Martins
    • 1
  • Sheila Jean McNeill Ingham
    • 2
  • João Bosco Pesquero
    • 1
  • Johnny Huard
    • 3
  1. 1.Biophysics DepartmentFederal University of São Paulo - UNIFESPSão PauloBrazil
  2. 2.Department of Orthopaedic SurgeryFederal University of São PauloSão PauloBrazil
  3. 3.Stem Cell Research Center, Department of Orthopaedic Surgery, and Department of BioengineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations