Skip to main content

Advertisement

Log in

Endoplasmic reticulum stress and inflammation: mechanisms and implications in diabetic retinopathy

  • Published:
Journal of Ocular Biology, Diseases, and Informatics

Abstract

The endoplasmic reticulum (ER) is the primary cellular compartment where proteins are synthesized and modified before they can be transported to their destination. Dysfunction of the ER impairs protein homeostasis and leads to the accumulation of misfolded/unfolded proteins in the ER, or ER stress. While it has long been recognized that ER stress is a major cause of conformational disorders, such as Alzheimer's disease, Huntington's disease, certain types of cancer, and type 2 diabetes, recent evidence suggests that ER stress is also implicated in many chronic inflammatory diseases. These diseases include irritable bowel syndrome, atherosclerosis, diabetic complications, and many others. Diabetic retinopathy is a common microvascular complication of diabetes, characterized by chronic inflammation, progressive damage to retinal vascular and neuronal cells, vascular leakage, and abnormal blood vessel growth (neovascularization). In this review, we discuss the role and mechanisms of ER stress in retinal inflammation and vascular damage in diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Diabetes Association. Implications of the diabetes control and complications trial. Diabetes Care. 2003;26 Suppl 1:25–7.

    Google Scholar 

  2. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378(9785):31–40.

    Article  PubMed  CAS  Google Scholar 

  3. Fong DS, Aiello L, Gardner TW, et al. Diabetic retinopathy. Diabetes Care. 2003;26(1):226–9.

    Article  PubMed  Google Scholar 

  4. American Diabetes Association. Diabetic nephropathy. Diabetes Care. 2000;23 Suppl 1:S69–72.

    Google Scholar 

  5. The Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122(4):477–85.

    Article  Google Scholar 

  6. The Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122(4):552–63.

    Article  Google Scholar 

  7. Ferris 3rd FL. Results of 20 years of research on the treatment of diabetic retinopathy. Prev Med. 1994;23(5):740–2.

    Article  PubMed  Google Scholar 

  8. National Eye Institute (2004) Statement on the prevalence of diabetic retinopathy and age-related macular degeneration among Hispanic/Latino Americans. http://www.nei.nih.gov/news/statements/latinostudy.asp.

  9. Rein DB, Zhang P, Wirth KE, et al. The economic burden of major adult visual disorders in the United States. Arch Ophthalmol. 2006;124(12):1754–60.

    Article  PubMed  Google Scholar 

  10. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Sci. 2004;306:457–61.

    Article  CAS  Google Scholar 

  11. Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Sci. 2006;313(5790):1137–40.

    Article  CAS  Google Scholar 

  12. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest. 2008;118(10):3378–89.

    Article  PubMed  CAS  Google Scholar 

  13. Li J, Wang JJ, Yu Q, Wang M, Zhang SX. Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett. 2009;583:1521–7.

    Article  PubMed  CAS  Google Scholar 

  14. Li J, Wang JJ, Zhang SX. Preconditioning with endoplasmic reticulum stress mitigates retinal endothelial inflammation via activation of X-box binding protein 1. J Biol Chem. 2011;286(6):4912–21.

    Article  PubMed  CAS  Google Scholar 

  15. Gardner TW, Antonetti DA. Novel potential mechanisms for diabetic macular edema: leveraging new investigational approaches. Curr Diab Rep. 2008;8(4):263–9.

    Article  PubMed  CAS  Google Scholar 

  16. Xu H-Z, Le Y-Z. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci. 2011;52(5):2160–4.

    Article  PubMed  CAS  Google Scholar 

  17. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci. 2004;45(9):3330–6.

    Article  PubMed  Google Scholar 

  18. Joussen AM, Poulaki V, Tsujikawa A, et al. Suppression of diabetic retinopathy with angiopoietin-1 [comment]. Am J Pathol. 2002;160(5):1683–93.

    Article  PubMed  CAS  Google Scholar 

  19. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes. 1998;47(12):1953–9.

    Article  PubMed  CAS  Google Scholar 

  20. Antonetti DA, Barber AJ, Bronson SK, et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes. 2006;55(9):2401–11.

    Article  PubMed  CAS  Google Scholar 

  21. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102:783–91.

    Article  PubMed  CAS  Google Scholar 

  22. Kusner LL, Sarthy VP, Mohr S. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase: a role in high glucose-induced apoptosis in retinal Muller cells. Invest Ophthalmol Vis Sci. 2004;45:1553–61.

    PubMed  Google Scholar 

  23. Sugimoto M, Sasoh M, Ido M, Wakitani Y, Takahashi C, Uji Y. Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy. Ophthalmol. 2005;219(6):379–85.

    Article  Google Scholar 

  24. Yonemura D, Tsuzuki K. Electroretinogram in diabetic retinopathy. Arch Ophthalmol. 1962;68(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  25. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103(1):51–4.

    Article  PubMed  CAS  Google Scholar 

  26. Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 2002;16(3):438–40.

    PubMed  CAS  Google Scholar 

  27. Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol. 2002;133(1):70–7.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang SX, Wang JJ, Gao G, Shao C, Mott R, J-x M. Pigment epithelium-derived factor (PEDF) is an endogenous anti-inflammatory factor. FASEB J. 2006;20(2):323–5.

    Article  PubMed  CAS  Google Scholar 

  29. Qaum T, Xu Q, Joussen AM, et al. VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci. 2001;42(10):2408–13.

    PubMed  CAS  Google Scholar 

  30. Joussen AM, Poulaki V, Qin W, et al. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol. 2002;160(2):501–9.

    Article  PubMed  CAS  Google Scholar 

  31. Koizumi K, Poulaki V, Doehmen S, et al. Contribution of TNF-alpha to leukocyte adhesion, vascular leakage, and apoptotic cell death in endotoxin-induced uveitis in vivo. Invest Ophthalmol Vis Sci. 2003;44(5):2184–91.

    Article  PubMed  Google Scholar 

  32. Behl Y, Krothapalli P, Desta T, DiPiazza A, Roy S, Graves DT. Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol. 2008;172(5):1411–8.

    Article  PubMed  Google Scholar 

  33. De La Cruz JP, Gonzalez-Correa JA, Guerrero A, De La Cuesta FS. Pharmacological approach to diabetic retinopathy. Diabetes Metabol Res Rev. 2004;20(2):91–113.

    Article  CAS  Google Scholar 

  34. Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Exp Diabetes Res. 2007;2007:43603.

    PubMed  Google Scholar 

  35. Chen P, Guo AM, Edwards PA, Trick G, Scicli AG. Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1619–29.

    Article  PubMed  CAS  Google Scholar 

  36. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    Article  PubMed  CAS  Google Scholar 

  37. Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol. 2008;8(9):663–74.

    Article  PubMed  CAS  Google Scholar 

  38. Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal. 2006;8(9–10):1391–418.

    Article  PubMed  Google Scholar 

  39. Bouman L, Schlierf A, Lutz A, et al. Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Diff. 2010;18:769–82.

    Article  CAS  Google Scholar 

  40. Sundar Rajan S, Srinivasan V, Balasubramanyam M, Tatu U. Endoplasmic reticulum (ER) stress & diabetes. Indian J Med Res. 2007;125(3):411–24.

    PubMed  CAS  Google Scholar 

  41. Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death Differ. 2006;13(3):385–92.

    Article  PubMed  CAS  Google Scholar 

  42. Szegezdi E, Duffy A, O'Mahoney ME, et al. ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochem Biophys Res Commun. 2006;349(4):1406–11.

    Article  PubMed  CAS  Google Scholar 

  43. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397(6716):271–4.

    Article  PubMed  CAS  Google Scholar 

  44. Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 1998;12(12):1812–24.

    Article  PubMed  CAS  Google Scholar 

  45. Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92–6.

    Article  PubMed  CAS  Google Scholar 

  46. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2002;2(6):326–32.

    Google Scholar 

  47. Ng D, Watowich S, Lamb R. Analysis in vivo of GRP78-BiP/substrate interactions and their role in induction of the GRP78-BiP gene. Mol Biol Cell. 1992;3(2):143.

    PubMed  CAS  Google Scholar 

  48. Haze K, Okada T, Yoshida H, et al. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J. 2001;355(Pt 1):19.

    Article  PubMed  CAS  Google Scholar 

  49. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89.

    Article  PubMed  CAS  Google Scholar 

  50. Paschen W, Frandsen A. Endoplasmic reticulum dysfunction–a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem. 2001;79(4):719–25.

    Article  PubMed  CAS  Google Scholar 

  51. Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 2004;11(4):372–80.

    Article  PubMed  CAS  Google Scholar 

  52. Jing G, Wang, J, Zhang, SX. ER stress and apoptosis: a new mechanism for retinal cell death. Exp Diabetes Res 2012. doi:10.1155/2012/589589.

  53. Mosbah B, Alfany-Fernandez I, Martel C, et al. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy undder ischemia-reperfusion. Cell Death and Dis. 2010;1:e52.

    Article  CAS  Google Scholar 

  54. Gotoh T, Endo M, Oike Y. Endoplasmic reticulum stress-related inflammation and cardiovascular disease. Int J Inflamm. 2011;2011:259462.

    Google Scholar 

  55. Urano F, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Sci. 2000;287(5453):664–6.

    Article  CAS  Google Scholar 

  56. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol cell. 2000;5(5):897–904.

    Article  PubMed  CAS  Google Scholar 

  57. Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.

    Article  PubMed  CAS  Google Scholar 

  58. Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099–108.

    Article  PubMed  CAS  Google Scholar 

  59. Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A. 2004;101(31):11269–74.

    Article  PubMed  CAS  Google Scholar 

  60. Marciniak SJYC, Oyadomari S, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18(24):3066–77.

    Article  PubMed  CAS  Google Scholar 

  61. Giorgi C, Stefani D, Bononi A, Rizzuto R, Pinton P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol. 2009;41(10):1817–27.

    Article  PubMed  CAS  Google Scholar 

  62. Namba T, Tanaka K-I, Ito Y, et al. Positive role of CCAAT/enhancer-binding protein homologous protein, a transcription factor involved in the endoplasmic reticulum stress response in the development of colitis. Am J Pathol. 2009;174(5):1786–98.

    Article  PubMed  CAS  Google Scholar 

  63. Endo M, Mori M, Akira S, Gotoh T. C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J Immunol. 2006;176(10):6245–53.

    PubMed  CAS  Google Scholar 

  64. Rahman SM, Schroeder-Gloeckler JM, et al. CCAAT/enhancing binding protein β deletion in mice attenuates inflammation, endoplasmic reticulum stress, and lipid accumulation in diet-induced nonalcoholic steatohepatitis. Hepatology. 2007;45(5):1108–17.

    Article  PubMed  CAS  Google Scholar 

  65. Yamamoto K, Takahara K, Oyadomari S, et al. Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol Biol Cell. 2010;21(17):2975–86.

    Article  PubMed  CAS  Google Scholar 

  66. Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biochem. 2002;277:13045–52.

    CAS  Google Scholar 

  67. Yamamoto KST, Matsui T, Sato M, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13:365–76.

    Article  PubMed  CAS  Google Scholar 

  68. Wu J, Rutkowski DT, Dubois M, et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell. 2007;13(3):351–64.

    Article  PubMed  CAS  Google Scholar 

  69. Martindale J, Fernandez R, Thuerauf D, et al. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res. 2006;98(9):1186–93.

    Article  PubMed  CAS  Google Scholar 

  70. Thameem F, Farook VS, Bogardus C, Prochazka M. Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians. Diabetes. 2006;55(3):839–42.

    Article  PubMed  CAS  Google Scholar 

  71. Tang L, Zhang Y, Jiang Y, et al. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Exp Biol Med. 2011;236(9):1051–63.

    Article  CAS  Google Scholar 

  72. Yan S, Zheng C, Chen Z-q, et al. Expression of endoplasmic reticulum stress-related factors in the retinas of diabetic rats. Exp Dia Res, 2012; (in press)

  73. Adachi T, Yasuda H, Nakamura S, et al. Endoplasmic reticulum stress induces retinal endothelial permeability of extracellular-superoxide dismutase. Free Radical Res. 2011;45(9):1083–92.

    Article  CAS  Google Scholar 

  74. Smith LE, Wesolowski E, McLellan A, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 1994;35(1):101–11.

    PubMed  CAS  Google Scholar 

  75. Zhang SX, Ma J-X, Sima J, et al. Genetic difference in susceptibility to the blood-retina barrier breakdown in diabetes and oxygen-induced retinopathy. Am J Pathol. 2005;166(1):313–21.

    Article  PubMed  Google Scholar 

  76. Zhang SX, Wang JJ, Dashti A, et al. Pigment epithelium-derived factor (PEDF) mitigates inflammation and oxidative stress in retinal pericytes exposed to oxidized-LDL. J Mol Endocrinol. 2008;41(3):135–43.

    Article  PubMed  CAS  Google Scholar 

  77. Zhong Y, Wang JJ, Zhang SX. Intermittent but not constant high glucose induces ER stress and inflammation in human retinal pericytes Adv Exp Med Biol 2012;723:285–92.

    Google Scholar 

  78. Ikesugi K, Mulhern ML, Madson CJ, et al. Induction of endoplasmic reticulum stress in retinal pericytes by glucose deprivation. Curr Eye Res. 2006;31(11):947–53.

    Article  PubMed  CAS  Google Scholar 

  79. Ghosh R, Ghosh R, Lipson KL, et al. Transcriptional regulation of VEGF-A by the unfolded protein reponse pathway. PLoS One. 2010;5(3).

  80. Zhou Q, Zouh M, Lou A, Xie D, Hou F. Advanced oxidation protein products induce inflammatory response and insulin resistance in cultured adipocytes via induction of endoplasmic reticulum stress. Cell Physiol Biochem. 2010;26:775–86.

    Article  PubMed  CAS  Google Scholar 

  81. Fougeray S, et al. Metabolic stress promotes renal tubular inflammation by triggering the unfolded protein response. Cell Death Dis 2012; (in press)

  82. Mahadevan N, et al. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci U S A. 2011;108(16):6561–6.

    Article  PubMed  CAS  Google Scholar 

  83. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–62.

    Article  PubMed  CAS  Google Scholar 

  84. Kaser A, Blumberg RS. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Seminars Immunol. 2009;21(3):156–63.

    Article  CAS  Google Scholar 

  85. Hotamisligil GH. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900–17.

    Article  PubMed  CAS  Google Scholar 

  86. Senger DRLS, Claffey KP, et al. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol. 1996;149:293–305.

    PubMed  CAS  Google Scholar 

  87. Tang J, Kern TS. Inflammation and diabetic retinopathy. Progress in Retinal and Eye Research. 2011;30:343–58.

    Article  PubMed  CAS  Google Scholar 

  88. Drogat B, Auguste P, Nguyen DT, et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007;67(14):6700–7.

    Article  PubMed  CAS  Google Scholar 

  89. Iwawaki T, Akai R, Yamanaka S, Kohno K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci U S A. 2009;106(39):16657–62.

    Article  PubMed  CAS  Google Scholar 

  90. Roybal CN, Yang S, Sun CW, et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 2004;279(15):14844–52.

    Article  PubMed  CAS  Google Scholar 

  91. Roybal CN, Hunsaker LA, Barbash O, Vander Jagt DL, Abcouwer SF. The oxidative stressor arsenite activates vascular endothelial growth factor mRNA transcription by an ATF4-dependent mechanism. J Biol Chem. 2005;280(21):20331–9.

    Article  PubMed  CAS  Google Scholar 

  92. Malabanan KP, Kanellakis P, Bobik A, Khachigian LM. Activation transcription factor-4 induced by fibroblast growth factor-2 regulates vascular endothelial growth factor-A transcription in vascular smooth muscle cells and mediates intimal thickening in rat arteries following balloon injury. Circ Res. 2008;103(4):378–87.

    Article  PubMed  CAS  Google Scholar 

  93. Karin M, Gallagher E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life. 2005;57(4–5):283–95.

    Article  PubMed  CAS  Google Scholar 

  94. Guma M, Rius J, Duong-Polk KX, Haddad GG, Lindsey JD, Karin M. Genetic and pharmacological inhibition of JNK ameliorates hypoxia-induced retinopathy through interference with VEGF expression. Proc Natl Acad Sci U S A. 2009;106(21):8760–5.

    Article  PubMed  CAS  Google Scholar 

  95. Kim H-T, Qiang W, Liu N, Scofield VL, Wong PK, Stoica G. Up-regulation of astrocyte cyclooxygenase-2, CCAAT/enhancer-binding protein, glucose-related protein 78, eukaryotic initiation factor 2α, and c-Jun N-terminal kinase by a neurovirulent murine retrovirus. J Neurovirol. 2005;11(2):166–79.

    Article  PubMed  CAS  Google Scholar 

  96. Urano FWX, Bertolotti A, Zhang Y, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664–6.

    Article  PubMed  CAS  Google Scholar 

  97. Verma G, Datta M. IL-1¦Â induces ER stress in a JNK dependent manner that determines cell death in human pancreatic epithelial MIA PaCa-2 cells. Apoptosis. 2010;2010:1–13.

    Google Scholar 

  98. Chen YM, Chiang WC, Lin SL, Wu KD, Tsai TJ, Hsieh BS. Dual regulation of tumor necrosis factor-alpha-induced CCL2/monocyte chemoattractant protein-1 expression in vascular smooth muscle cells by nuclear factor-kappaB and activator protein-1: modulation by type III phosphodiesterase inhibition. J Pharmacol Exp Ther. 2004;309(3):978–86.

    Article  PubMed  CAS  Google Scholar 

  99. Chen W, Esselman WJ, Jump DB, Busik JV. Anti-inflammatory effect of docosahexaenoic acid on cytokine-induced adhesion molecule expression in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 2005;46(11):4342–7.

    Article  PubMed  Google Scholar 

  100. Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.

    Article  PubMed  CAS  Google Scholar 

  101. Zheng L, Howell SJ, Hatala DA, Huang K, Kern TS. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy. Diabetes. 2007;56(2):337–45.

    Article  PubMed  CAS  Google Scholar 

  102. Mitamura Y, Harada T, Harada C, et al. NF-kappaB in epiretinal membranes after human diabetic retinopathy. Diabetologia. 2003;46(5):699–703.

    Article  PubMed  CAS  Google Scholar 

  103. Kaji Y, Usui T, Ishida S, et al. Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest Ophthalmol Vis Sci. 2007;48(2):858–65.

    Article  PubMed  Google Scholar 

  104. Yamazaki HHN, Hayakawa K, Tagawa Y, et al. Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J Immunol. 2009;183:1480–7.

    Article  PubMed  CAS  Google Scholar 

  105. Jiao P, Ma J, Feng B, et al. FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways. Obesity. 2011;19:483–90.

    Article  PubMed  CAS  Google Scholar 

  106. Ko MK, Saraswathy S, Parikh JG, Rao NA. The role of TLR4 activation in photoreceptor mitochondrial oxidative stress. Invest Ophthalmol Vis Sci. 2011;52:5824–35.

    Article  PubMed  CAS  Google Scholar 

  107. Jiang G, Ke Y, Sun D, Wang Y, Kaplan HJ, Shao H. Regulatory role of TLR ligands on the activation of autoreactive t cells by retinal astrocytes. Invest Ophthalmol Vis Sci. 2009;50:4769–76.

    Article  PubMed  Google Scholar 

  108. Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B. Innate immunity in the retina: toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J Neuroimmunol. 2004;153:7–15.

    Article  PubMed  CAS  Google Scholar 

  109. Dvoriantchikova G, Barakat DJ, Hernandez E, Shestopalov V. Toll-like receptor 4 contributes to retinal ischemia/reperfusion injury. Mol Vis. 2010;16:1907–12.

    PubMed  CAS  Google Scholar 

  110. Woo CW, Cui D, Arellano J, et al. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol. 2009;11:1473–80.

    Article  PubMed  CAS  Google Scholar 

  111. Martinon FC, Lee X, Glimcher LH. TLR activation of the transcription factor XBP1 regulates innate immune response in macrophages. Nat Immunol. 2010;11:411–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant EY019949 and research awards from American Diabetes Association, Juvenile Diabetes Research Foundation, Oklahoma Center for the Advancement of Science and Technology, American Health Assistance Foundation, and Harold Hamm Diabetes Center at University of Oklahoma (all to SXZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.X., Sanders, E. & Wang, J.J. Endoplasmic reticulum stress and inflammation: mechanisms and implications in diabetic retinopathy. j ocul biol dis inform 4, 51–61 (2011). https://doi.org/10.1007/s12177-011-9075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12177-011-9075-5

Keywords

Navigation