Skip to main content

Advertisement

Log in

Inhibition of the adrenomedullin/nitric oxide signaling pathway in early diabetic retinopathy

  • Published:
Journal of Ocular Biology, Diseases, and Informatics

Abstract

The nitric oxide (NO) signaling pathway is integrally involved in visual processing and changes in the NO pathway are measurable in eyes of diabetic patients. The small peptide adrenomedullin (ADM) can activate a signaling pathway to increase the enzyme activity of neuronal nitric oxide synthase (nNOS). ADM levels are elevated in eyes of diabetic patients and therefore, ADM may play a role in the pathology of diabetic retinopathy. The goal of this research was to test the effects of inhibiting the ADM/NO signaling pathway in early diabetic retinopathy. Inhibition of this pathway decreased NO production in high-glucose retinal cultures. Treating diabetic mice with the PKC β inhibitor ruboxistaurin for 5 weeks lowered ADM mRNA levels and ADM-like immunoreactivity and preserved retinal function as assessed by electroretinography. The results of this study indicate that inhibiting the ADM/NO signaling pathway prevents neuronal pathology and functional losses in early diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aiello LM. Perspectives on diabetic retinopathy. Am J Ophthalmol. 2003;136:122–35.

    Article  PubMed  Google Scholar 

  2. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M, Kimball SR, Krady JK, LaNoue KF, Norbury CC, Quinn PG, Sandirasegarane L, Simpson IA. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes. 2006;55:2401–11.

    Article  PubMed  CAS  Google Scholar 

  3. Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Experiment Ophthalmol. 2000;28:3–8.

    Article  PubMed  CAS  Google Scholar 

  4. Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:283–90.

    Article  PubMed  CAS  Google Scholar 

  5. Di Leo MA, Caputo S, Falsini B, Porciatti V, Greco AV, Ghirlanda G. Presence and further development of retinal dysfunction after 3-year follow up in IDDM patients without angiographically documented vasculopathy. Diabetologia. 1994;37:911–6.

    Article  PubMed  Google Scholar 

  6. Parisi V, Uccioli L. Visual electrophysiological responses in persons with type 1 diabetes. Diabetes Metab Res Rev. 2001;17:12–8.

    Article  PubMed  CAS  Google Scholar 

  7. Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res. 2002;74:615–25.

    Article  PubMed  CAS  Google Scholar 

  8. Engerman RL, Kern TS. Retinopathy in animal models of diabetes. Diabetes Metab Rev. 1995;11:109–20.

    Article  PubMed  CAS  Google Scholar 

  9. Daley ML, Watzke RC, Riddle MC. Early loss of blue-sensitive color vision in patients with type I diabetes. Diabetes Care. 1987;10:777–81.

    Article  PubMed  CAS  Google Scholar 

  10. Roy MS, Gunkel RD, Podgor MJ. Color vision defects in early diabetic retinopathy. Arch Ophthalmol. 1986;104:225–8.

    Article  PubMed  CAS  Google Scholar 

  11. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103:51–4.

    Article  PubMed  CAS  Google Scholar 

  12. Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998;47:815–20.

    Article  PubMed  CAS  Google Scholar 

  13. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci. 2004;45:3330–6.

    Article  PubMed  Google Scholar 

  14. VanGuilder HD, Brucklacher RM, Patel K, Ellis RW, Freeman WM, Barber AJ. Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. Eur J Neurosci. 2008;28:1–11.

    Article  PubMed  Google Scholar 

  15. Kern TS, Miller CM, Du Y, Zheng L, Mohr S, Ball SL, Kim M, Jamison JA, Bingaman DP. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes. 2007;56:373–9.

    Article  PubMed  CAS  Google Scholar 

  16. Eldred WD. Nitric oxide in the retina. Functional neuroanatomy of the nitric oxide system. 2000. 111–145.

  17. Yilmaz G, Esser P, Kociok N, Aydin P, Heimann K. Elevated vitreous nitric oxide levels in patients with proliferative diabetic retinopathy. Am J Ophthalmol. 2000;130:87–90.

    Article  PubMed  CAS  Google Scholar 

  18. Hattenbach LO, Allers A, Klais C, Koch F, Hecker M. L-Arginine-nitric oxide pathway-related metabolites in the aqueous humor of diabetic patients. Invest Ophthalmol Vis Sci. 2000;41:213–7.

    PubMed  CAS  Google Scholar 

  19. Blute TA, Mayer B, Eldred WD. Immunocytochemical and histochemical localization of nitric oxide synthase in the turtle retina. Vis Neurosci. 1997;14:717–29.

    Article  PubMed  CAS  Google Scholar 

  20. Eldred WD, Blute TA. Imaging of nitric oxide in the retina. Vision Res. 2005;45:3469–86.

    Article  PubMed  CAS  Google Scholar 

  21. Giove TJ, Deshpande MM, Eldred WD. Identification of alternate transcripts of neuronal nitric oxide synthase in the mouse retina. J Neurosci Res. 2009;87:3134–42.

    Article  PubMed  CAS  Google Scholar 

  22. Giove TJ, Deshpande MM, Gagen CS, Eldred WD. Increased neuronal nitric oxide synthase activity in retinal neurons in early diabetic retinopathy. Mol Vis. 2009;15:2249–58.

    PubMed  CAS  Google Scholar 

  23. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun. 1993;192:553–60.

    Article  PubMed  CAS  Google Scholar 

  24. Hinson JP, Kapas S, Smith DM. Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev. 2000;21:138–67.

    Article  PubMed  CAS  Google Scholar 

  25. Hay DL, Conner AC, Howitt SG, Smith DM, Poyner DR. The pharmacology of adrenomedullin receptors and their relationship to CGRP receptors. J Mol Neurosci. 2004;22:105–13.

    Article  PubMed  Google Scholar 

  26. Xu Y, Krukoff TL. Adrenomedullin stimulates nitric oxide release from SK-N-SH human neuroblastoma cells by modulating intracellular calcium mobilization. Endocrinology. 2005;146:2295–305.

    Article  PubMed  CAS  Google Scholar 

  27. Szokodi I, Kinnunen P, Tavi P, Weckstrom M, Toth M, Ruskoaho H. Evidence for cAMP-independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide. Circulation. 1998;97:1062–70.

    PubMed  CAS  Google Scholar 

  28. Huang W, Wang L, Yuan M, Ma J, Hui Y. Adrenomedullin affects two signal transduction pathways and the migration in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2004;45:1507–13.

    Article  PubMed  Google Scholar 

  29. Xu Y, Krukoff TL. Adrenomedullin stimulates nitric oxide production from primary rat hypothalamic neurons: roles of calcium and phosphatases. Mol Pharmacol. 2007;72:112–20.

    Article  PubMed  CAS  Google Scholar 

  30. Ito S, Fujisawa K, Sakamoto T, Ishibashi T. Elevated adrenomedullin in the vitreous of patients with diabetic retinopathy. Ophthalmologica. 2003;217:53–7.

    Article  PubMed  CAS  Google Scholar 

  31. Er H, Doganay S, Ozerol E, Yurekli M. Adrenomedullin and leptin levels in diabetic retinopathy and retinal diseases. Ophthalmologica. 2005;219:107–11.

    Article  PubMed  CAS  Google Scholar 

  32. Udono T, Takahashi K, Takano S, Shibahara S, Tamai M. Elevated adrenomedullin in the vitreous of patients with proliferative vitreoretinopathy. Am J Ophthalmol. 1999;128:765–7.

    Article  PubMed  CAS  Google Scholar 

  33. Caliumi C, Balducci S, Petramala L, Cotesta D, Zinnamosca L, Cianci R, Di Donato D, Vingolo EM, Fallucca F, Letizia C. Plasma levels of adrenomedullin, a vasoactive peptide, in type 2 diabetic patients with and without retinopathy. Minerva Endocrinol. 2007;32:73–8.

    PubMed  CAS  Google Scholar 

  34. Martinez A, Elsasser TH, Bhathena SJ, Pio R, Buchanan TA, Macri CJ, Cuttitta F. Is adrenomedullin a causal agent in some cases of type 2 diabetes? Peptides. 1999;20:1471–8.

    Article  PubMed  CAS  Google Scholar 

  35. Garcia-Unzueta MT, Montalban C, Pesquera C, Berrazueta JR, Amado JA. Plasma adrenomedullin levels in type 1 diabetes. Relationship with clinical parameters. Diabetes Care. 1998;21:999–1003.

    Article  PubMed  CAS  Google Scholar 

  36. Taniguchi T, Kawase K, Gu ZB, Kimura M, Okano Y, Kawakami H, Tsuji A, Kitazawa Y. Ocular effects of adrenomedullin. Exp Eye Res. 1999;69:467–74.

    Article  PubMed  CAS  Google Scholar 

  37. Clementi G, Floriddia ML, Prato A, Marino A, Drago F. Adrenomedullin and ocular inflammation in the rabbit. Eur J Pharmacol. 2000;400:321–6.

    Article  PubMed  CAS  Google Scholar 

  38. Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288:2579–88.

    Article  PubMed  CAS  Google Scholar 

  39. Shore AC. The microvasculature in type 1 diabetes. Semin Vasc Med. 2002;2:9–20.

    Article  PubMed  Google Scholar 

  40. Xu X, Zhu Q, Xia X, Zhang S, Gu Q, Luo D. Blood-retinal barrier breakdown induced by activation of protein kinase C via vascular endothelial growth factor in streptozotocin-induced diabetic rats. Curr Eye Res. 2004;28:251–6.

    Article  PubMed  CAS  Google Scholar 

  41. Danis RP, Bingaman DP, Jirousek M, Yang Y. Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PKCbeta inhibition with LY333531. Invest Ophthalmol Vis Sci. 1998;39:171–9.

    PubMed  CAS  Google Scholar 

  42. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes. 1997;46:1473–80.

    Article  PubMed  CAS  Google Scholar 

  43. Aiello LP, Clermont A, Arora V, Davis MD, Sheetz MJ, Bursell SE. Inhibition of PKC beta by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients. Invest Ophthalmol Vis Sci. 2006;47:86–92.

    Article  PubMed  Google Scholar 

  44. Funatsu H, Yamashita H, Ikeda T, Mimura T, Eguchi S, Hori S. Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology. 2003;110:1690–6.

    Article  PubMed  Google Scholar 

  45. Suzuma I, Suzuma K, Ueki K, Hata Y, Feener EP, King GL, Aiello LP. Stretch-induced retinal vascular endothelial growth factor expression is mediated by phosphatidylinositol 3-kinase and protein kinase C (PKC)-zeta but not by stretch-induced ERK1/2, Akt, Ras, or classical/novel PKC pathways. J Biol Chem. 2002;277:1047–57.

    Article  PubMed  CAS  Google Scholar 

  46. Hayashi M, Shimosawa T, Fujita T. Hyperglycemia increases vascular adrenomedullin expression. Biochem Biophys Res Commun. 1999;258:453–6.

    Article  PubMed  CAS  Google Scholar 

  47. Abbracchio MP, Cattabeni F, Di Giulio AM, Finco C, Paoletti AM, Tenconi B, Gorio A. Early alterations of Gi/Go protein-dependent transductional processes in the retina of diabetic animals. J Neurosci Res. 1991;29:196–200.

    Article  PubMed  CAS  Google Scholar 

  48. Ishimitsu T, Kojima M, Kangawa K, Hino J, Matsuoka H, Kitamura K, Eto T, Matsuo H. Genomic structure of human adrenomedullin gene. Biochem Biophys Res Commun. 1994;203:631–9.

    Article  PubMed  CAS  Google Scholar 

  49. Tsuruda T, Kato J, Kitamura K, Mishima K, Imamura T, Koiwaya Y, Kangawa K, Eto T. Roles of protein kinase C and Ca2 + -dependent signaling in angiotensin II-induced adrenomedullin production in rat cardiac myocytes. J Hypertens. 2001;19:757–63.

    Article  PubMed  CAS  Google Scholar 

  50. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272:728–31.

    Article  PubMed  CAS  Google Scholar 

  51. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK, King GL, Kikkawa R. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 2000;14:439–47.

    PubMed  CAS  Google Scholar 

  52. Cotter MA, Jack AM, Cameron NE. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin Sci (Lond). 2002;103:311–21.

    CAS  Google Scholar 

  53. Kelly DJ, Zhang Y, Hepper C, Gow RM, Jaworski K, Kemp BE, Wilkinson-Berka JL, Gilbert RE. Protein kinase C beta inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes. 2003;52:512–8.

    Article  PubMed  CAS  Google Scholar 

  54. Aiello LP, Davis MD, Girach A, Kles KA, Milton RC, Sheetz MJ, Vignati L, Zhi XE. Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy. Ophthalmology. 2006;113:2221–30.

    Article  PubMed  Google Scholar 

  55. Aiello LP, Vignati L, Sheetz MJ, Zhi X, Girach A, Davis MD, Wolka AM, Shahri N, Milton RC. Oral protein kinase C beta inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the Protein Kinase C beta Inhibitor-Diabetic Retinopathy Study and the Protein kinase C beta Inhibitor-Diabetic Retinopathy Study 2. Retina 2011.

  56. Sheetz MJ, Aiello LP, Shahri N, Davis MD, Kles KA, Danis RP. Effect of ruboxistaurin (RBX) on visual acuity decline over a 6-year period with cessation and reinstitution of therapy: results of an open-label extension of the Protein Kinase C Diabetic Retinopathy Study 2 (PKC-DRS2). Retina. 2011;31:1053–9.

    Article  PubMed  CAS  Google Scholar 

  57. Davis MD, Sheetz MJ, Aiello LP, Milton RC, Danis RP, Zhi X, Girach A, Jimenez MC, Vignati L. Effect of ruboxistaurin on the visual acuity decline associated with long-standing diabetic macular edema. Invest Ophthalmol Vis Sci. 2009;50:1–4.

    Article  PubMed  Google Scholar 

  58. Barbuch RJ, Campanale K, Hadden CE, Zmijewski M, Yi P, O’Bannon DD, Burkey JL, Kulanthaivel P. In vivo metabolism of [14C]ruboxistaurin in dogs, mice, and rats following oral administration and the structure determination of its metabolites by liquid chromatography/mass spectrometry and NMR spectroscopy. Drug Metab Dispos. 2006;34:213–24.

    Article  PubMed  CAS  Google Scholar 

  59. Pong WW, Stouracova R, Frank N, Kraus JP, Eldred WD. Comparative localization of cystathionine beta-synthase and cystathionine gamma-lyase in retina: differences between amphibians and mammals. J Comp Neurol. 2007;505:158–65.

    Article  PubMed  CAS  Google Scholar 

  60. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  61. Jirousek MR, Gillig JR, Gonzalez CM, Heath WF, McDonald III JH, Neel DA, Rito CJ, Singh U, Stramm LE, Melikian-Badalian A, Baevsky M, Ballas LM, Hall SE, Winneroski LL, Faul MM. (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16, 21-dimetheno-1H, 13H-dibenzo[e, k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-d ione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta. J Med Chem. 1996;39:2664–71.

    Article  PubMed  CAS  Google Scholar 

  62. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.

    Article  PubMed  CAS  Google Scholar 

  63. Akula JD, Mocko JA, Benador IY, Hansen RM, Favazza TL, Vyhovsky TC, Fulton AB. The neurovascular relation in oxygen-induced retinopathy. Mol Vis. 2008;14:2499–508.

    PubMed  CAS  Google Scholar 

  64. Akula JD, Hansen RM, Tzekov R, Favazza TL, Vyhovsky TC, Benador IY, Mocko JA, McGee D, Kubota R, Fulton AB. Visual cycle modulation in neurovascular retinopathy. Exp Eye Res. 2010;91:153–61.

    Article  PubMed  CAS  Google Scholar 

  65. Hood DC, Birch DG. A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis Neurosci. 1992;8:107–26.

    Article  PubMed  CAS  Google Scholar 

  66. Lamb TD, Pugh Jr EN. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol. 1992;449:719–58.

    PubMed  CAS  Google Scholar 

  67. Pugh Jr EN, Lamb TD. Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta. 1993;1141:111–49.

    Article  PubMed  CAS  Google Scholar 

  68. Robson JG, Frishman LJ. Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci. 1995;12:837–50.

    Article  PubMed  CAS  Google Scholar 

  69. Pugh EN Jr, Falsini B, Lyubarsky AL. The origins of the major rod- and cone-driven components of the rodent electroretinogram and the effect of age and light-rearing history on the magnitude of these components. In: Photostasis and related phenomena. New York: Plenum Press; 1998.

  70. Wurziger K, Lichtenberger T, Hanitzsch R. On-bipolar cells and depolarising third-order neurons as the origin of the ERG-b-wave in the RCS rat. Vision Res. 2001;41:1091–101.

    Article  PubMed  CAS  Google Scholar 

  71. Wachtmeister L. Some aspects of the oscillatory response of the retina. Prog Brain Res. 2001;131:465–74.

    Article  PubMed  CAS  Google Scholar 

  72. Dong CJ, Agey P, Hare WA. Origins of the electroretinogram oscillatory potentials in the rabbit retina. Vis Neurosci. 2004;21:533–43.

    Article  PubMed  Google Scholar 

  73. Akula JD, Mocko JA, Moskowitz A, Hansen RM, Fulton AB. The oscillatory potentials of the dark-adapted electroretinogram in retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2007;48:5788–97.

    Article  PubMed  Google Scholar 

  74. Shirao Y, Kawasaki K. Electrical responses from diabetic retina. Prog Retin Eye Res. 1998;17:59–76.

    Article  PubMed  CAS  Google Scholar 

  75. Bresnick GH, Palta M. Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. Arch Ophthalmol. 1987;105:929–33.

    Article  PubMed  CAS  Google Scholar 

  76. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol. 2002;47 Suppl 2:S253–62.

    Article  PubMed  Google Scholar 

  77. Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des. 2007;13:2699–712.

    Article  PubMed  CAS  Google Scholar 

  78. Kern TS, Barber AJ. Retinal ganglion cells in diabetes. J Physiol. 2008;586:4401–8.

    Article  PubMed  CAS  Google Scholar 

  79. Barber AJ, Schuller K, Bridi MA, Bronson SK. Visual acuity and contrast sensitivity are reduced in the Ins2Akita diabetic mouse. ARVO Annual Meeting. 2010.

  80. Lecleire-Collet A, Audo I, Aout M, Girmens JF, Sofroni R, Erginay A, Le Gargasson JF, Mohand-Said S, Meas T, Guillausseau PJ, Vicaut E, Paques M, Massin P. Evaluation of retinal function and flicker light-induced retinal vascular response in normotensive patients with diabetes without retinopathy. Invest Ophthalmol Vis Sci. 2011;52:2861–7.

    Article  PubMed  Google Scholar 

  81. van Dijk HW, Kok PH, Garvin M, Sonka M, DeVries JH, Michels RP, van Velthoven ME, Schlingemann RO, Verbraak FD, Abramoff MD. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50:3404–9.

    Article  PubMed  Google Scholar 

  82. van Dijk HW, Verbraak FD, Kok PH, Garvin MK, Sonka M, Lee K, DeVries JH, Michels RP, van Velthoven ME, Schlingemann RO, Abramoff MD. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51:3660–5.

    Article  PubMed  Google Scholar 

  83. Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, Hidaka H, Watanabe Y. Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem. 1999;274:20597–602.

    Article  PubMed  CAS  Google Scholar 

  84. Rameau GA, Chiu LY, Ziff EB. Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J Biol Chem. 2004;279:14307–14.

    Article  PubMed  CAS  Google Scholar 

  85. Song T, Hatano N, Horii M, Tokumitsu H, Yamaguchi F, Tokuda M, Watanabe Y. Calcium/calmodulin-dependent protein kinase I inhibits neuronal nitric-oxide synthase activity through serine 741 phosphorylation. FEBS Lett. 2004;570:133–7.

    Article  PubMed  CAS  Google Scholar 

  86. Song T, Hatano N, Kume K, Sugimoto K, Yamaguchi F, Tokuda M, Watanabe Y. Inhibition of neuronal nitric-oxide synthase by phosphorylation at threonine1296 in NG108-15 neuronal cells. FEBS Lett. 2005;579:5658–62.

    Article  PubMed  CAS  Google Scholar 

  87. Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab. 2000;279:E1202–6.

    PubMed  CAS  Google Scholar 

  88. Komeima K, Hayashi Y, Naito Y, Watanabe Y. Inhibition of neuronal nitric-oxide synthase by calcium/ calmodulin-dependent protein kinase IIalpha through Ser847 phosphorylation in NG108-15 neuronal cells. J Biol Chem. 2000;275:28139–43.

    PubMed  CAS  Google Scholar 

  89. Bredt DS, Ferris CD, Snyder SH. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992;267:10976–81.

    PubMed  CAS  Google Scholar 

  90. Rameau GA, Chiu LY, Ziff EB. NMDA receptor regulation of nNOS phosphorylation and induction of neuron death. Neurobiol Aging. 2003;24:1123–33.

    Article  PubMed  CAS  Google Scholar 

  91. Kikuchi M, Kashii S, Mandai M, Yasuyoshi H, Honda Y, Kaneda K, Akaike A. Protective effects of FK506 against glutamate-induced neurotoxicity in retinal cell culture. Invest Ophthalmol Vis Sci. 1998;39:1227–32.

    PubMed  CAS  Google Scholar 

  92. Dotsch J, Schoof E, Schocklmann HO, Brune B, Knerr I, Repp R, Rascher W. Nitric oxide increases adrenomedullin receptor function in rat mesangial cells. Kidney Int. 2002;61:1707–13.

    Article  PubMed  CAS  Google Scholar 

  93. Dotsch J, Schoof E, Hanze J, Dittrich K, Opherk P, Dumke K, Rascher W. Nitric oxide stimulates adrenomedullin secretion and gene expression in endothelial cells. Pharmacology. 2002;64:135–9.

    Article  PubMed  CAS  Google Scholar 

  94. Ribatti D, Nico B, Spinazzi R, Vacca A, Nussdorfer GG. The role of adrenomedullin in angiogenesis. Peptides. 2005;26:1670–5.

    Article  PubMed  CAS  Google Scholar 

  95. Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, Ikeda E. Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2003;44:2163–70.

    Article  PubMed  Google Scholar 

  96. Mohammad G, Kowluru RA. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Lab Invest. 2010;90:1365–72.

    Article  PubMed  CAS  Google Scholar 

  97. Martinez A, Oh HR, Unsworth EJ, Bregonzio C, Saavedra JM, Stetler-Stevenson WG, Cuttitta F. Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem J. 2004;383:413–8.

    Article  PubMed  CAS  Google Scholar 

  98. Kowluru RA. Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated. Acta Diabetol. 2001;38:179–85.

    Article  PubMed  CAS  Google Scholar 

  99. Gardner TW, Antonetti DA. Ruboxistaurin for diabetic retinopathy. Ophthalmology. 2006;113:2135–6.

    Article  PubMed  Google Scholar 

  100. Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol. 1993;265:E783–93.

    PubMed  CAS  Google Scholar 

  101. Araujo IM, Carvalho CM. Role of nitric oxide and calpain activation in neuronal death and survival. Curr Drug Targets CNS Neurol Disord. 2005;4:319–24.

    Article  PubMed  CAS  Google Scholar 

  102. Volbracht C, Chua BT, Ng CP, Bahr BA, Hong W, Li P. The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. J Neurochem. 2005;93:1280–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to sincerely thank Todd Blute for his technical assistance. This research was supported by NIH EY004785 to WDE and NIH RC1-EY020308 to JDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Eldred.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blom, J.J., Giove, T.J., Favazza, T.L. et al. Inhibition of the adrenomedullin/nitric oxide signaling pathway in early diabetic retinopathy. j ocul biol dis inform 4, 70–82 (2011). https://doi.org/10.1007/s12177-011-9072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12177-011-9072-8

Keywords

Navigation