Skip to main content

Advertisement

Log in

Role of adenosine in diabetic retinopathy

  • Published:
Journal of Ocular Biology, Diseases, and Informatics

Abstract

In diabetic retinopathy (DR), abnormalities in vascular and neuronal function are closely related to the local production of inflammatory mediators whose potential source is microglia. Adenosine and its receptors have been shown to possess anti-inflammatory properties that have only recently been studied in DR. Here, we review recent studies that determined the roles of adenosine and its associated proteins, including equilibrative nucleoside transporters, adenosine receptors, and underlying signaling pathways in retinal complications associated with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klein R, et al. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1984;102(4):520–6.

    Article  PubMed  CAS  Google Scholar 

  2. Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000;41(7):1971–80.

    PubMed  CAS  Google Scholar 

  3. Zeng XX, Ng YK, Ling EA. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci. 2000;17(3):463–71.

    Article  PubMed  CAS  Google Scholar 

  4. Ammary-Risch NJ, Huang SS. The primary care physician's role in preventing vision loss and blindness in patients with diabetes. J Natl Med Assoc. 2011;103(3):281–3.

    PubMed  Google Scholar 

  5. Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol. 1961;66:366–78.

    Article  PubMed  CAS  Google Scholar 

  6. Bursell SE, et al. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci. 1996;37(5):886–97.

    PubMed  CAS  Google Scholar 

  7. Benson WE, et al. Current popularity of pneumatic retinopexy. Retina. 1999;19(3):238–41.

    PubMed  CAS  Google Scholar 

  8. Palmberg PF. Diabetic retinopathy. Diabetes. 1977;26(7):703–9.

    PubMed  CAS  Google Scholar 

  9. Joussen AM, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18(12):1450–2.

    PubMed  CAS  Google Scholar 

  10. Barber AJ, et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783–91.

    Article  PubMed  CAS  Google Scholar 

  11. El-Remessy AB, et al. Experimental diabetes causes breakdown of the blood–retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. Am J Pathol. 2003;162(6):1995–2004.

    Article  PubMed  CAS  Google Scholar 

  12. El-Remessy AB, et al. Neuroprotective and blood–retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol. 2006;168(1):235–44.

    Article  PubMed  CAS  Google Scholar 

  13. Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.

    Article  PubMed  Google Scholar 

  14. Ali TK, et al. Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes. Diabetes. 2008;57(4):889–98.

    Article  PubMed  CAS  Google Scholar 

  15. Langmann T. Microglia activation in retinal degeneration. J Leukoc Biol. 2007;81(6):1345–51.

    Article  PubMed  CAS  Google Scholar 

  16. Lieth E, et al. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res. 2000;70(6):723–30.

    Article  PubMed  CAS  Google Scholar 

  17. El-Remessy AB, et al. Cannabidiol protects retinal neurons by preserving glutamine synthetase activity in diabetes. Mol Vis. 2010;16:1487–95.

    PubMed  CAS  Google Scholar 

  18. Ambati J, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol. 1997;115(9):1161–6.

    Article  PubMed  CAS  Google Scholar 

  19. Lieth E, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998;47(5):815–20.

    Article  PubMed  CAS  Google Scholar 

  20. Kowluru RA, et al. Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int. 2001;38(5):385–90.

    Article  PubMed  CAS  Google Scholar 

  21. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262(5134):689–95.

    Article  PubMed  CAS  Google Scholar 

  22. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.

    Article  PubMed  CAS  Google Scholar 

  23. Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord. 2008;9(4):315–27.

    Article  PubMed  CAS  Google Scholar 

  24. Aloisi F. Immune function of microglia. Glia. 2001;36(2):165–79.

    Article  PubMed  CAS  Google Scholar 

  25. Wood PL. Neuroinflammation: mechanisms and management. Totowa New York, NY: Humana Press; 2003.

    Google Scholar 

  26. Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126(2):227–32.

    Article  PubMed  Google Scholar 

  27. Yang LP, et al. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(5):2319–27.

    Article  PubMed  Google Scholar 

  28. Liu W, et al. Expression of macrophage colony-stimulating factor (M-CSF) and its receptor in streptozotocin-induced diabetic rats. Curr Eye Res. 2009;34(2):123–33.

    Article  PubMed  CAS  Google Scholar 

  29. Ibrahim AS, et al. Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation. Mol Vis. 2010;16:2033–42.

    PubMed  CAS  Google Scholar 

  30. Joussen AM, et al. TNF-alpha mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis. 2009;15:1418–28.

    PubMed  CAS  Google Scholar 

  31. Joussen AM, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 2002;16(3):438–40.

    PubMed  CAS  Google Scholar 

  32. Krady JK, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005. doi:10.2337/db(54.5.1559.

  33. Ibrahim AS, et al. Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes. 2011;60(4):1122–33.

    Article  PubMed  CAS  Google Scholar 

  34. Schalkwijk CG, et al. Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia. 1999;42(3):351–7.

    Article  PubMed  CAS  Google Scholar 

  35. Tang J, et al. Retina accumulates more glucose than does the embryologically similar cerebral cortex in diabetic rats. Diabetologia. 2000;43(11):1417–23.

    Article  PubMed  CAS  Google Scholar 

  36. Wang AL, et al. AGEs mediated expression and secretion of TNF alpha in rat retinal microglia. Exp Eye Res. 2007;84(5):905–13.

    Article  PubMed  CAS  Google Scholar 

  37. Schalkwijk CG. Comment on “AGEs mediated expression and secretion of TNF alpha in rat retinal microglia” by Dr Wang et al. Exp Eye Res. 2007;85:572–3. doi:4. author reply 574.

    Article  PubMed  CAS  Google Scholar 

  38. Quan Y, Du J, Wang X. High glucose stimulates GRO secretion from rat microglia via ROS, PKC, and NF-kappaB pathways. J Neurosci Res. 2007;85(14):3150–9.

    Article  PubMed  CAS  Google Scholar 

  39. Collis MG, Hourani SM. Adenosine receptor subtypes. Trends Pharmacol Sci. 1993;14(10):360–6.

    Article  PubMed  CAS  Google Scholar 

  40. Fredholm BB, et al. Nomenclature and classification of purinoceptors. Pharmacol Rev. 1994;46(2):143–56.

    PubMed  CAS  Google Scholar 

  41. Feoktistov I, Goldstein AE, Biaggioni I. Role of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinase kinase in adenosine A2B receptor-mediated interleukin-8 production in human mast cells. Mol Pharmacol. 1999;55(4):726–34.

    PubMed  CAS  Google Scholar 

  42. Bong GW, Rosengren S, Firestein GS. Spinal cord adenosine receptor stimulation in rats inhibits peripheral neutrophil accumulation. The role of N-methyl-d-aspartate receptors. J Clin Invest. 1996;98(12):2779–85.

    Article  PubMed  CAS  Google Scholar 

  43. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50(3):413–92.

    PubMed  CAS  Google Scholar 

  44. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414(6866):916–20.

    Article  PubMed  CAS  Google Scholar 

  45. Awad AS, et al. Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am J Physiol Renal Physiol. 2006;290(4):F828–37.

    Article  PubMed  CAS  Google Scholar 

  46. Liou GI, et al. Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest Ophthalmol Vis Sci. 2008;49(12):5526–31.

    Article  PubMed  Google Scholar 

  47. Ibrahim AS, et al. A(2A) adenosine receptor (A(2A)AR) as a therapeutic target in diabetic retinopathy. Am J Pathol. 2011;178(5):2136–45.

    Article  PubMed  CAS  Google Scholar 

  48. Williams M. Challenges in developing P2 purinoceptor-based therapeutics. CIBA Found Symp. 1996;198:309–21.

    PubMed  CAS  Google Scholar 

  49. Moser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol. 1989;256(4 Pt 1):C799–806.

    PubMed  CAS  Google Scholar 

  50. Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A. 2006;103(20):7895–900.

    Article  PubMed  CAS  Google Scholar 

  51. Dunwiddie TV, Diao L. Regulation of extracellular adenosine in rat hippocampal slices is temperature dependent: role of adenosine transporters. Neuroscience. 2000;95(1):81–8.

    Article  PubMed  CAS  Google Scholar 

  52. Picano E, Michelassi C. Chronic oral dipyridamole as a ‘novel’ antianginal drug: the collateral hypothesis. Cardiovasc Res. 1997;33(3):666–70.

    Article  PubMed  CAS  Google Scholar 

  53. De Schryver EL. Dipyridamole in stroke prevention: effect of dipyridamole on blood pressure. Stroke. 2003;34(10):2339–42.

    Article  PubMed  Google Scholar 

  54. De la Cruz JP, et al. Effect of aspirin plus dipyridamole on the retinal vascular pattern in experimental diabetes mellitus. J Pharmacol Exp Ther. 1997;280(1):454–9.

    PubMed  Google Scholar 

  55. Leung GP, Man RY, Tse CM. D-Glucose upregulates adenosine transport in cultured human aortic smooth muscle cells. Am J Physiol Heart Circ Physiol. 2005;288(6):H2756–62.

    Article  PubMed  CAS  Google Scholar 

  56. Pawelczyk T, Podgorska M, Sakowicz M. The effect of insulin on expression level of nucleoside transporters in diabetic rats. Mol Pharmacol. 2003;63(1):81–8.

    Article  PubMed  CAS  Google Scholar 

  57. Buckley NE, et al. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur J Pharmacol. 2000;396(2–3):141–9.

    Article  PubMed  CAS  Google Scholar 

  58. Crandall J, et al. Neuroprotective and intraocular pressure-lowering effects of (-)Delta9-tetrahydrocannabinol in a rat model of glaucoma. Ophthalmic Res. 2007;39(2):69–75.

    Article  PubMed  CAS  Google Scholar 

  59. Mechoulam R, Parker LA, Gallily R. Cannabidiol: an overview of some pharmacological aspects. J Clin Pharmacol. 2002;42(11 Suppl):11S–9S.

    PubMed  CAS  Google Scholar 

  60. Hampson AJ, et al. Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A. 1998;95(14):8268–73.

    Article  PubMed  CAS  Google Scholar 

  61. Malfait AM, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A. 2000;97(17):9561–6.

    Article  PubMed  CAS  Google Scholar 

  62. El-Remessy AB, et al. Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation. Mol Vis. 2008;14:2190–203.

    PubMed  CAS  Google Scholar 

  63. Braida D, et al. Post-ischemic treatment with cannabidiol prevents electroencephalographic flattening, hyperlocomotion and neuronal injury in gerbils. Neurosci Lett. 2003;346(1–2):61–4.

    Article  PubMed  CAS  Google Scholar 

  64. Mishima K, et al. Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke. 2005;36(5):1077–82.

    Article  PubMed  Google Scholar 

  65. Rajesh M, et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol. 2007;293(1):H610–9.

    Article  PubMed  CAS  Google Scholar 

  66. Weiss L, et al. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity. 2006;39(2):143–51.

    Article  PubMed  CAS  Google Scholar 

  67. Barnes MP. Sativex: clinical efficacy and tolerability in the treatment of symptoms of multiple sclerosis and neuropathic pain. Expert Opin Pharmacother. 2006;7(5):607–15.

    Article  PubMed  CAS  Google Scholar 

  68. Liou G, et al. Cannabidiol as a putative novel therapy for diabetic retinopathy: a postulated mechanism of action as an entry point for biomarker-guided clinical development. Curr Pharmacogenomics Person Med. 2009;7(3):215–22.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory I. Liou.

Additional information

This work has been supported by Vision Discovery Institute (GIL), Department of Defense (GIL), and Egyptian Cultural and Educational Bureau (ASI).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liou, G.I., Ahmad, S., Naime, M. et al. Role of adenosine in diabetic retinopathy. j ocul biol dis inform 4, 19–24 (2011). https://doi.org/10.1007/s12177-011-9067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12177-011-9067-5

Keywords

Navigation