Skip to main content

Advertisement

Log in

Genetics of Mitochondrial Cardiomyopathy

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Primary mitochondrial disorders (PMD) are a heterogeneous group of individual genetic multi-systemic diseases that are challenging to diagnose and manage; currently, there is no cure or FDA-approved therapies for these progressive genetic syndromes. Among the many organs that may be affected by mitochondrial disorders, the heart is one of the most common, given its high energy requirements, leading to mitochondrial cardiomyopathies.

Recent Findings

Mitochondrial cardiomyopathies are due to underlying genetic defects in genes involved in mitochondrial functioning. These genes, which can be of nuclear or mitochondrial DNA, are either directly involved in the electron transport chain and oxidative phosphorylation or play a role in other mitochondrial pathways such as mitochondrial DNA (mtDNA) replication or maintenance of the inner mitochondrial membrane. Due to the high degree of variability and complexity, current therapeutic strategies are inadequately effective in treating mitochondrial cardiomyopathies. Further research, including longitudinal prospective natural history studies and large-scale randomized clinical trials, is warranted to determine the most effective therapeutic and pharmacologic strategies to address mitochondrial cardiomyopathies.

Summary

In this review, we present our current understanding of mitochondrial cardiomyopathies, diagnostic tools, and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J. 2013;40(4):385–94. Excellent review of mitochondrial cardiomyopathies.

  2. Lee SR, Kim N, Noh YH, et al. Mitochondrial DNA, mitochondrial dysfunction, and cardiac manifestations. Front Biosci (Landmark Ed). 2017;22(7):1177–94. https://doi.org/10.2741/4541.

    Article  CAS  PubMed  Google Scholar 

  3. Elorza AA, Soffia JP. mtDNA heteroplasmy at the core of aging-associated heart failure. An integrative view of OXPHOS and mitochondrial life cycle in cardiac mitochondrial physiology. Front Cell Dev Biol. 2021;9:625020. https://doi.org/10.3389/fcell.2021.625020.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Bates MG, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW. Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J. 2012;33(24):3023–33. https://doi.org/10.1093/eurheartj/ehs275. Excellent review of mitochondrial cardiomyopathies.

  5. Taylor RW, Giordano C, Davidson MM, et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;41(10):1786–96. https://doi.org/10.1016/s0735-1097(03)00300-0.

    Article  CAS  PubMed  Google Scholar 

  6. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254–60. https://doi.org/10.1016/j.ajhg.2008.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arbustini E, Narula N, Tavazzi L, et al. The MOGE(S) classification of cardiomyopathy for clinicians. J Am Coll Cardiol. 2014;64(3):304–18. https://doi.org/10.1016/j.jacc.2014.05.027.

    Article  PubMed  Google Scholar 

  8. • El-Hattab AW, Scaglia F. Mitochondrial cardiomyopathies. Front Cardiovasc Med. 2016;3:25. https://doi.org/10.3389/fcvm.2016.00025. Excellent review of mitochondrial cardiomyopathies.

  9. Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol. 2014;177(3):754–63. https://doi.org/10.1016/j.ijcard.2014.11.014.

    Article  PubMed  Google Scholar 

  10. Morava E, van den Heuvel L, Hol F, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology. 2006;67(10):1823–6. https://doi.org/10.1212/01.wnl.0000244435.27645.54.

    Article  CAS  PubMed  Google Scholar 

  11. Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology. 2002;59(9):1406–11. https://doi.org/10.1212/01.wnl.0000033795.17156.00.

    Article  CAS  PubMed  Google Scholar 

  12. Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 2010;11:25–44. https://doi.org/10.1146/annurev-genom-082509-141720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Limongelli G, Tome-Esteban M, Dejthevaporn C, Rahman S, Hanna MG, Elliott PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur J Heart Fail. 2010;12(2):114–21. https://doi.org/10.1093/eurjhf/hfp186.

    Article  CAS  PubMed  Google Scholar 

  14. Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol. 2001;49(3):377–83.

    Article  CAS  PubMed  Google Scholar 

  15. Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M. Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J. 2003;24(3):280–8. https://doi.org/10.1016/s0195-668x(02)00387-1.

    Article  CAS  PubMed  Google Scholar 

  16. Debray FG, Lambert M, Chevalier I, et al. Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics. 2007;119(4):722–33. https://doi.org/10.1542/peds.2006-1866.

    Article  PubMed  Google Scholar 

  17. Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial diseases and cardiomyopathies. Can J Cardiol. 2015;31(11):1360–76. https://doi.org/10.1016/j.cjca.2015.08.017.

    Article  PubMed  Google Scholar 

  18. • Scaglia F, Towbin JA, Craigen WJ, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114(4):925-31. https://doi.org/10.1542/peds.2004-0718. Excellent review of pediatric mitochondrial cardiomyopathies.

  19. Wahbi K, Bougouin W, Behin A, et al. Long-term cardiac prognosis and risk stratification in 260 adults presenting with mitochondrial diseases. Eur Heart J. 2015;36(42):2886–93. https://doi.org/10.1093/eurheartj/ehv307.

    Article  PubMed  Google Scholar 

  20. Liu Z, Song Y, Li D, et al. The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy. J Med Genet. 2014;51(3):176–84. https://doi.org/10.1136/jmedgenet-2013-101818.

    Article  CAS  PubMed  Google Scholar 

  21. Merante F, Tein I, Benson L, Robinson BH. Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene. Am J Hum Genet. 1994;55(3):437–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shin WS, Tanaka M, Suzuki J, Hemmi C, Toyo-oka T. A novel homoplasmic mutation in mtDNA with a single evolutionary origin as a risk factor for cardiomyopathy. Am J Hum Genet. 2000;67(6):1617–20. https://doi.org/10.1086/316896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marin-Garcia J, Goldenthal MJ, Ananthakrishnan R, Pierpont ME. The complete sequence of mtDNA genes in idiopathic dilated cardiomyopathy shows novel missense and tRNA mutations. J Card Fail. 2000;6(4):321–9. https://doi.org/10.1054/jcaf.2000.19232.

    Article  CAS  PubMed  Google Scholar 

  24. Santorelli FM, Tanji K, Manta P, et al. Maternally inherited cardiomyopathy: an atypical presentation of the mtDNA 12S rRNA gene A1555G mutation. Am J Hum Genet. 1999;64(1):295–300. https://doi.org/10.1086/302188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bates MG, Hollingsworth KG, Newman JH, et al. Concentric hypertrophic remodelling and subendocardial dysfunction in mitochondrial DNA point mutation carriers. Eur Heart J Cardiovasc Imaging. 2013;14(7):650–8. https://doi.org/10.1093/ehjci/jes226.

    Article  PubMed  Google Scholar 

  26. Mazzaccara C, Mirra B, Barretta F, Caiazza M, Lombardo B, Scudiero O, Tinto N, Limongelli G, Frisso G. Molecular epidemiology of mitochondrial cardiomyopathy: a search among mitochondrial and nuclear genes. Int J Mol Sci. 2021;22(11):5742. https://doi.org/10.3390/ijms22115742.

    Article  PubMed  PubMed Central  Google Scholar 

  27. • Limongelli G, Masarone D, D’Alessandro R, Elliott PM. Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Future Cardiol. 2012;8(1):71-88. https://doi.org/10.2217/fca.11.79. Excellent review of mitochondrial cardiomyopathies.

  28. Mazzaccara C, Limongelli G, Petretta M, et al. A common polymorphism in the SCN5A gene is associated with dilated cardiomyopathy. J Cardiovasc Med (Hagerstown). 2018;19(7):344–50. https://doi.org/10.2459/JCM.0000000000000670.

    Article  CAS  PubMed  Google Scholar 

  29. Limongelli G, Monda E, Tramonte S, et al. Prevalence and clinical significance of red flags in patients with hypertrophic cardiomyopathy. Int J Cardiol. 2020;299:186–91. https://doi.org/10.1016/j.ijcard.2019.06.073.

    Article  PubMed  Google Scholar 

  30. Blank AC, Breur JMPJ, Fuchs SA, Koop K, Baas AF. Mitochondrial cardiomyopathies In: Baars HF, Doevendans PAFM, Houweling AC, van Tintelen JP (eds). Clinical Cardiogenetics Springer, Cham. 2020.https://doi.org/10.1007/978-3-030-45457-9_11

  31. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16. https://doi.org/10.1161/CIRCULATIONAHA.106.174287.

    Article  PubMed  Google Scholar 

  32. Authors/Task Force m, Elliott PM, Anastasakis A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733–79. https://doi.org/10.1093/eurheartj/ehu284.

    Article  Google Scholar 

  33. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):e783-831. https://doi.org/10.1161/CIR.0b013e318223e2bd.

    Article  PubMed  Google Scholar 

  34. Ciarambino T, Menna G, Sansone G, Giordano M. Cardiomyopathies: an overview. Int J Mol Sci. 2021;22(14):7722. https://doi.org/10.3390/ijms22147722

  35. Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J. Dec 1980;44(6):672–3. https://doi.org/10.1136/hrt.44.6.672

  36. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996;93(5):841–2. https://doi.org/10.1161/01.cir.93.5.841.

    Article  CAS  PubMed  Google Scholar 

  37. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331(23):1564–75. https://doi.org/10.1056/NEJM199412083312307.

    Article  CAS  PubMed  Google Scholar 

  38. Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296(15):1867–76. https://doi.org/10.1001/jama.296.15.1867.

    Article  CAS  PubMed  Google Scholar 

  39. Nugent AW, Daubeney PE, Chondros P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348(17):1639–46. https://doi.org/10.1056/NEJMoa021737.

    Article  PubMed  Google Scholar 

  40. Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;390(10092):400–14. https://doi.org/10.1016/S0140-6736(16)31713-5.

    Article  CAS  PubMed  Google Scholar 

  41. Reichart D, Magnussen C, Zeller T, Blankenberg S. Dilated cardiomyopathy: from epidemiologic to genetic phenotypes: a translational review of current literature. J Intern Med. 2019;286(4):362–72. https://doi.org/10.1111/joim.12944.

    Article  CAS  PubMed  Google Scholar 

  42. McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest. 2013;123(1):19–26. https://doi.org/10.1172/JCI62862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thebault C, Ollivier R, Leurent G, Marcorelles P, Langella B, Donal E. Mitochondriopathy: a rare aetiology of restrictive cardiomyopathy. Eur J Echocardiogr. 2008;9(6):840–5. https://doi.org/10.1093/ejechocard/jen189.

    Article  PubMed  Google Scholar 

  44. Ruszkiewicz AR, Vernon-Roberts E. Sudden death in an infant due to histiocytoid cardiomyopathy. A light-microscopic, ultrastructural, and immunohistochemical study. Am J Forensic Med Pathol. 1995;16(1):74–80. https://doi.org/10.1097/00000433-199503000-00017.

    Article  CAS  PubMed  Google Scholar 

  45. Cabana MD, Becher O, Smith A. Histiocytoid cardiomyopathy presenting with Wolff-Parkinson-White syndrome. Heart. 2000;83(1):98–9. https://doi.org/10.1136/heart.83.1.98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burke A, Mont E, Kutys R, Virmani R. Left ventricular noncompaction: a pathological study of 14 cases. Hum Pathol. 2005;36(4):403–11. https://doi.org/10.1016/j.humpath.2005.02.004.

    Article  PubMed  Google Scholar 

  47. Jefferies JL. Barth syndrome. Am J Med Genet C Semin Med Genet. 2013;163C(3):198–205. https://doi.org/10.1002/ajmg.c.31372.

    Article  CAS  PubMed  Google Scholar 

  48. Mazurova S, Tesarova M, Magner M, et al. Novel mutations in the TAZ gene in patients with Barth syndrome. Prague Med Rep. 2013;114(3):139–53. https://doi.org/10.14712/23362936.2014.16.

    Article  CAS  PubMed  Google Scholar 

  49. Cizkova A, Stranecky V, Mayr JA, et al. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat Genet. 2008;40(11):1288–90. https://doi.org/10.1038/ng.246.

    Article  CAS  PubMed  Google Scholar 

  50. Guleray N, Kosukcu C, Taskiran ZE, et al. Atypical presentation of Sengers syndrome: a novel mutation revealed with postmortem genetic testing. Fetal Pediatr Pathol. 2020;39(2):163–71. https://doi.org/10.1080/15513815.2019.1639089.

    Article  PubMed  Google Scholar 

  51. St-Pierre G, Steinberg C, Dubois M, Senechal M. What the cardiologist should know about mitochondrial cardiomyopathy? Can J Cardiol. 2019;35(2):221–4. https://doi.org/10.1016/j.cjca.2018.11.018.

    Article  PubMed  Google Scholar 

  52. Laonigro I, Correale M, Di Biase M, Altomare E. Alcohol abuse and heart failure. Eur J Heart Fail. 2009;11(5):453–62. https://doi.org/10.1093/eurjhf/hfp037.

    Article  PubMed  Google Scholar 

  53. Merlo M, Cannata A, Gobbo M, Stolfo D, Elliott PM, Sinagra G. Evolving concepts in dilated cardiomyopathy. Eur J Heart Fail. 2018;20(2):228–39. https://doi.org/10.1002/ejhf.1103.

    Article  PubMed  Google Scholar 

  54. Rapezzi C, Arbustini E, Caforio AL, et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(19):1448–58. https://doi.org/10.1093/eurheartj/ehs397.

    Article  PubMed  Google Scholar 

  55. Jha P, Wang X, Auwerx J. Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE). Curr Protoc Mouse Biol. 2016;6(1):1–14. https://doi.org/10.1002/9780470942390.mo150182.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–50. https://doi.org/10.1002/path.4809.

    Article  CAS  PubMed  Google Scholar 

  57. Bourgeois JM, Tarnopolsky MA. Pathology of skeletal muscle in mitochondrial disorders. Mitochondrion. 2004;4(5–6):441–52. https://doi.org/10.1016/j.mito.2004.07.036.

    Article  CAS  PubMed  Google Scholar 

  58. Tashiro R, Onoue N, Rikimaru H, et al. Mitochondrial cardiomyopathy with a unique (99m)Tc-MIBI/(123)I-BMIPP mismatch pattern. Intern Med. 2017;56(3):321–5. https://doi.org/10.2169/internalmedicine.56.7525.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Murphy E, Ardehali H, Balaban RS, et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res. 2016;118(12):1960–91. https://doi.org/10.1161/RES.0000000000000104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lakdawala NK, Winterfield JR, Funke BH. Dilated cardiomyopathy. Circ Arrhythm Electrophysiol. 2013;6(1):228–37. https://doi.org/10.1161/CIRCEP.111.962050.

    Article  PubMed  Google Scholar 

  61. Badano LP, Miglioranza MH, Edvardsen T, et al. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging. 2015;16(9):919–48. https://doi.org/10.1093/ehjci/jev139.

    Article  PubMed  Google Scholar 

  62. Quadir A, Pontifex CS, Lee Robertson H, Labos C, Pfeffer G. Systematic review and meta-analysis of cardiac involvement in mitochondrial myopathy. Neurol Genet. 2019;5(4):e339. https://doi.org/10.1212/NXG.0000000000000339.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Florian A, Ludwig A, Stubbe-Drager B, et al. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. J Cardiovasc Magn Reson. 2015;17:40. https://doi.org/10.1186/s12968-015-0145-x.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Group JCSJW. Guidelines for diagnosis and treatment of patients with hypertrophic cardiomyopathy (JCS 2012)- Digest Version. Circ J. 2016;80(3):753–74. https://doi.org/10.1253/circj.CJ-66-0122.

    Article  Google Scholar 

  65. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol. 2009;53(17):1475–87. https://doi.org/10.1016/j.jacc.2009.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Friedrich MG, Marcotte F. Cardiac magnetic resonance assessment of myocarditis. Circ Cardiovasc Imaging. 2013;6(5):833–9. https://doi.org/10.1161/CIRCIMAGING.113.000416.

    Article  PubMed  Google Scholar 

  67. Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol. 2007;50(19):1914–31. https://doi.org/10.1016/j.jacc.2007.09.008.

    Article  PubMed  Google Scholar 

  68. Maruo Y, Ueda Y, Murayama K, Takeda A. A case report of Leigh syndrome diagnosed by endomyocardial biopsy. Eur Heart J Case Rep. 2021;5(2):ytaa582. https://doi.org/10.1093/ehjcr/ytaa582.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ware JS, Li J, Mazaika E, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med. 2016;374(3):233–41. https://doi.org/10.1056/NEJMoa1505517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carroll CJ, Brilhante V, Suomalainen A. Next-generation sequencing for mitochondrial disorders. Br J Pharmacol. 2014;171(8):1837–53. https://doi.org/10.1111/bph.12469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilcox NS, Prenner SB, Cevasco M, et al. End stage mitochondrial cardiomyopathy and heart transplantation due to biallelic pathogenic C1QBP variants. Circ Genom Precis Med. 2022;15(2):e003559. https://doi.org/10.1161/CIRCGEN.121.003559.

    Article  PubMed  Google Scholar 

  72. Feichtinger RG, Olahova M, Kishita Y, et al. Biallelic C1QBP mutations cause severe neonatal-, childhood-, or later-onset cardiomyopathy associated with combined respiratory-chain deficiencies. Am J Hum Genet. 2017;101(4):525–38. https://doi.org/10.1016/j.ajhg.2017.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang J, Li H, Sun M, et al. Early onset of combined oxidative phosphorylation deficiency in two Chinese brothers caused by a homozygous (Leu275Phe) mutation in the C1QBP gene. Front Pediatr. 2020;8:583047. https://doi.org/10.3389/fped.2020.583047.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Webster G, Reynolds M, Arva NC, et al. Mitochondrial cardiomyopathy and ventricular arrhythmias associated with biallelic variants in C1QBP. Am J Med Genet A. 2021;185(8):2496–501. https://doi.org/10.1002/ajmg.a.62262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ng YS, Alston CL, Diodato D, et al. The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease. J Med Genet. 2016;53(11):768–75. https://doi.org/10.1136/jmedgenet-2016-103910.

    Article  CAS  PubMed  Google Scholar 

  76. •• Parikh S, Karaa A, Goldstein A, et al. Solid organ transplantation in primary mitochondrial disease: proceed with caution. Mol Genet Metab. 2016;118(3):178-184. https://doi.org/10.1016/j.ymgme.2016.04.009. Review of solid organ transplantation in primary mitochondrial disorders including long term poutcome in cardiac transplant.

  77. van Rahden VA, Fernandez-Vizarra E, Alawi M, et al. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome. Am J Hum Genet. 2015;96(4):640–50. https://doi.org/10.1016/j.ajhg.2015.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reinson K, Kovacs-Nagy R, Oiglane-Shlik E, et al. Diverse phenotype in patients with complex I deficiency due to mutations in NDUFB11. Eur J Med Genet. 2019;62(11):103572. https://doi.org/10.1016/j.ejmg.2018.11.006.

    Article  PubMed  Google Scholar 

  79. Lichtenstein DA, Crispin AW, Sendamarai AK, et al. A recurring mutation in the respiratory complex 1 protein NDUFB11 is responsible for a novel form of X-linked sideroblastic anemia. Blood. 2016;128(15):1913–7. https://doi.org/10.1182/blood-2016-05-719062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rea G, Homfray T, Till J, et al. Histiocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in NDUFB11. Cold Spring Harb Mol Case Stud. 2017;3(1):a001271. https://doi.org/10.1101/mcs.a001271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shehata BM, Cundiff CA, Lee K, et al. Exome sequencing of patients with histiocytoid cardiomyopathy reveals a de novo NDUFB11 mutation that plays a role in the pathogenesis of histiocytoid cardiomyopathy. Am J Med Genet A. 2015;167A(9):2114–21. https://doi.org/10.1002/ajmg.a.37138.

    Article  CAS  PubMed  Google Scholar 

  82. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. https://doi.org/10.1002/ejhf.592.

    Article  PubMed  Google Scholar 

  83. Clarke SL, Bowron A, Gonzalez IL, et al. Barth syndrome. Orphanet J Rare Dis. 2013;8:23. https://doi.org/10.1186/1750-1172-8-23.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Raman SV, Hor KN, Mazur W, et al. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(2):153–61. https://doi.org/10.1016/S1474-4422(14)70318-7.

    Article  CAS  PubMed  Google Scholar 

  85. Yeoh T, Hayward C, Benson V, et al. A randomised, placebo-controlled trial of carvedilol in early familial dilated cardiomyopathy. Heart Lung Circ. 2011;20(9):566–73. https://doi.org/10.1016/j.hlc.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  86. • Chatfield KC, Sparagna GC, Chau S, et al. Elamipretide improves mitochondrial function in the failing human heart. JACC Basic Transl Sci. 2019;4(2):147–157. https://doi.org/10.1016/j.jacbts.2018.12.005Potentially promising new therapy for mitochondrial cardiomyopathies.

  87. Daubert MA, Yow E, Dunn G, Marchev S, Barnhart H, Douglas PS, O'Connor C, Goldstein S, Udelson JE, Sabbah HN. Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide. Circ Heart Fail. 2017;10(12):e004389. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004389

  88. Sabbah HN, Gupta RC, Singh-Gupta V, Zhang K, Lanfear DE. Abnormalities of mitochondrial dynamics in the failing heart: normalization following long-term therapy with elamipretide. Cardiovasc Drugs Ther. 2018;32(4):319–28. https://doi.org/10.1007/s10557-018-6805-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. •• Parikh S, Goldstein A, Karaa A, Koenig MK, Anselm I, Brunel-Guitton C, Christodoulou J, Cohen BH, Dimmock D, Enns GM, Falk MJ, Feigenbaum A, Frye RE, Ganesh J, Griesemer D, Haas R, Horvath R, Korson M, Kruer MC, Mancuso M, McCormack S, Raboisson MJ, Reimschisel T, Salvarinova R, Saneto RP, Scaglia F, Shoffner J, Stacpoole PW, Sue CM, Tarnopolsky M, Van Karnebeek C, Wolfe LA, Cunningham ZZ, Rahman S, Chinnery PF. Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med. 2017;19(12). https://doi.org/10.1038/gim.2017.107. Consensus statement on management for mitochondrial disorders.

  90. Parikh S, Goldstein A, Koenig MK, et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med. 2015;17(9):689–701. https://doi.org/10.1038/gim.2014.177.

    Article  CAS  PubMed  Google Scholar 

  91. Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012;226(2):274–86. https://doi.org/10.1002/path.3028.

    Article  CAS  PubMed  Google Scholar 

  92. Scott Binder M, Roda RH, Corse AM, Sidhu S, Stewart S, Barth AS. Prevalence of heart disease in patients with mitochondrial abnormalities on skeletal muscle biopsy. Ann Clin Transl Neurol. 2021;8(4):825–30. https://doi.org/10.1002/acn3.51327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. T. and A. C. G. wrote and edited the manuscript.

Corresponding author

Correspondence to Amy C. Goldstein.

Ethics declarations

Ethics Statement

A retrospective chart review of the clinical course and laboratory test results was performed for patients presented. Informed consent was provided, and all patients were enrolled in the Children’s Hospital of Philadelphia (CHOP) Institutional Review Board (IRB) approved study #08–6177 (Marni J. Falk, PI) that allows for medical record reviews, medical photography, publication for educational purposes, and clinical cohort analyses.

Conflict of Interest

Dr Atif Towheed declares no conflict of interest. Dr Amy Goldstein is a consultant for Reneo Pharmaceuticals and on the Speakers Bureau for United Mitochondrial Disease Foundation and MitoAction.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Towheed, A., Goldstein, A.C. Genetics of Mitochondrial Cardiomyopathy. Curr Cardiovasc Risk Rep 17, 49–72 (2023). https://doi.org/10.1007/s12170-023-00715-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-023-00715-4

Keywords

Navigation