Skip to main content

Advertisement

Log in

Dietary and Lifestyle Modification for the Prevention and Treatment of Hypertension

  • Hypertension (J. Sivak, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To examine the evidence for nonpharmacologic dietary and lifestyle interventions to lower blood pressure.

Recent Findings

In addition to aerobic exercise, resistance exercise training also significantly reduces blood pressure, especially when performed using large muscle groups and among persons with hypertension. Plant-based diets such as the lacto-ovo vegetarian diet and intermittent fasting are associated with blood pressure improvement similar to or greater than the Dietary Approaches to Stop Hypertension (DASH) diet. Nontraditional lifestyle approaches for blood pressure lowering such as meditation, sauna use, and yoga have shown promising results but need further study. Mobile health technology may be a useful tool to promote medication adherence and blood pressure lowering.

Summary

The incorporation of dietary and lifestyle interventions can significantly improve blood pressure, especially among persons with hypertension, and potentially reduce the number and/or dose of blood pressure medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. World Health Organization. Hypertension. https://www.who.int/health-topics/hypertension#tab=tab_1

  2. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–37.

    Article  CAS  Google Scholar 

  3. Whelton PK, Carey RM, Aronow WS, Casey de Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018;138(17):e484–594.

  4. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Part B):2960–84.

    Article  Google Scholar 

  5. Virani SS. Alonso Alvaro, Benjamin Emelia J., et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article  Google Scholar 

  6. Muntner P, Hardy ST, Fine LJ, Jaeger BC, Wozniak G, Levitan EB, et al. Trends in blood pressure control among US adults with hypertension, 1999-2000 to 2017-2018. JAMA. 2020;324(12):1190–200. https://doi.org/10.1001/jama.2020.14545.

  7. Whelton SP, McEvoy JW, Shaw L, et al. Association of normal systolic blood pressure level with cardiovascular disease in the absence of risk factors. JAMA Cardiol. 2020;5(9):1011–8.

    Article  Google Scholar 

  8. He J, Tell GS, Tang YC, Mo PS, He GQ. Effect of migration on blood pressure: the Yi People Study. Epidemiology. 1991;2(2):88–97.

    Article  CAS  Google Scholar 

  9. Mueller NT, Noya-Alarcon O, Contreras M, Appel LJ, Dominguez-Bello MG. Association of age with blood pressure across the lifespan in isolated Yanomami and Yekwana villages. JAMA Cardiol. 2018;3(12):1247–9.

    Article  Google Scholar 

  10. Fagard RH, Cornelissen VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil. 2007;14(1):12–7.

    Article  Google Scholar 

  11. Santos LP, Moraes RS, Vieira PJC, Ash GI, Waclawovsky G, Pescatello LS, et al. Effects of aerobic exercise intensity on ambulatory blood pressure and vascular responses in resistant hypertension. J Hypertens. 2016;34(7):1317–24. https://doi.org/10.1097/hjh.0000000000000961.

  12. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136(7):493–503.

    Article  Google Scholar 

  13. Casonatto J, Goessler KF, Cornelissen VA, Cardoso JR, Polito MD. The blood pressure-lowering effect of a single bout of resistance exercise: a systematic review and meta-analysis of randomised controlled trials. Eur J Prev Cardiol. 2016;23(16):1700–14.

    Article  Google Scholar 

  14. Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58(5):950–8.

    Article  CAS  Google Scholar 

  15. Kelley GA, Kelley KS. Isometric handgrip exercise and resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2010;28(3):411–8.

    Article  CAS  Google Scholar 

  16. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–8.

  17. Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, et al. Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the american heart association. Hypertension. 2013;61(6):1360–83.

  18. Ferraro RA, Fischer NM, Xun H, Michos ED. Nutrition and physical activity recommendations from the United States and European cardiovascular guidelines: a comparative review. Curr Opin Cardiol. 2020;35(5):508–16.

    Article  Google Scholar 

  19. Cornelissen VA, Arnout J, Holvoet P, Fagard RH. Influence of exercise at lower and higher intensity on blood pressure and cardiovascular risk factors at older age. J Hypertens. 2009;27(4):753–62.

    Article  CAS  Google Scholar 

  20. Zomer E, Gurusamy K, Leach R, Trimmer C, Lobstein T, Morris S, et al. Interventions that cause weight loss and the impact on cardiovascular risk factors: a systematic review and meta-analysis. Obes Rev. 2016;17(10):1001–11.

  21. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

  22. Flack KD, Hays HM, Moreland J, Long DE. Exercise for weight loss: further evaluating energy compensation with exercise. Med Sci Sports Exerc. 2020;52(11):2466–75.

    Article  Google Scholar 

  23. Ikramuddin S, Korner J, Lee W-J, Connett JE, Inabnet WB, Billington CJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia. JAMA. 2013;309(21):2240–9. https://doi.org/10.1001/jama.2013.5835.

  24. Pedersen JS, Borup C, Damgaard M, Yatawara VD, Floyd AK, Gadsbøll N, et al. Early 24-hour blood pressure response to Roux-en-Y gastric bypass in obese patients. Scand J Clin Lab Invest. 2017;77(1):53–9.

  25. Rhee NA, Vilsbøll T, Knop FK. Current evidence for a role of GLP-1 in Roux-en-Y gastric bypass-induced remission of type 2 diabetes. Diabetes Obes Metab. 2012;14(4):291–8. https://doi.org/10.1111/j.1463-1326.2011.01505.x.

    Article  CAS  PubMed  Google Scholar 

  26. Osto E, Doytcheva P, Corteville C, Bueter M, Dörig C, Stivala S, et al. Rapid and body weight-independent improvement of endothelial and high-density lipoprotein function after Roux-en-Y gastric bypass: role of glucagon-like peptide-1. Circulation. 2015;131(10):871–81.

  27. Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care. 2008;31(Suppl 2):S290–6.

    Article  Google Scholar 

  28. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. New Engl J Med. 1997;336(16):1117–24. https://doi.org/10.1056/nejm199704173361601.

  29. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10.

  30. Gibbs J, Gaskin E, Ji C, Miller MA, Cappuccio FP. The effect of plant-based dietary patterns on blood pressure: a systematic review and meta-analysis of controlled intervention trials. Journal of Hypertension. 2021;39(1):23–37. https://doi.org/10.1097/hjh.0000000000002604This meta-analysis of 41 clinical trials demonstrates that as a group plant-based diets were associated with a significant reduction in systolic blood pressure and that the lacto-ovo vegetarian diet had a similar reduction in systolic blood pressure compared to the Dietary Approaches to Stop Hypertension diet.

    Article  CAS  PubMed  Google Scholar 

  31. Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med. 2010;170(2):126–35.

  32. Juraschek SP, Miller ER, Weaver CM, Appel LJ. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol. 2017;70(23):2841–8. https://doi.org/10.1016/j.jacc.2017.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones NRV, Forouhi NG, Khaw K-T, Wareham NJ, Monsivais P. Accordance to the Dietary Approaches to Stop Hypertension diet pattern and cardiovascular disease in a British, population-based cohort. Eur J Epidemiol. 2018;33(2):235–44.

    Article  Google Scholar 

  34. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34.

  35. Rees K, Takeda A, Martin N, et al. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2019;3:CD009825.

    PubMed  Google Scholar 

  36. Doménech M, Roman P, Lapetra J, García de la Corte FJ, Sala-Vila A, de la Torre R, et al. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: one-year randomized, clinical trial. Hypertension. 2014;64(1):69–76.

  37. Amy J, Berendsen AM, de Groot Lisette CPGM, et al. Mediterranean-style diet improves systolic blood pressure and arterial stiffness in older adults. Hypertension. 2019;73(3):578–86.

    Article  Google Scholar 

  38. Evans CEL, Greenwood DC, Threapleton DE, Cleghorn CL, Nykjaer C, Woodhead CE, et al. Effects of dietary fibre type on blood pressure. J Hypertens. 2015;33(5):897–911. https://doi.org/10.1097/hjh.0000000000000515.

  39. Hartley L, May MD, Loveman E, Colquitt JL, Rees K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews. Published online 2016. https://doi.org/10.1002/14651858.cd011472.pub2

  40. Khalesi S, Irwin C, Schubert M. Flaxseed consumption may reduce blood pressure: a systematic review and meta-analysis of controlled trials. J Nutr. 2015;145(4):758–65.

    Article  CAS  Google Scholar 

  41. Khan K, Jovanovski E, Ho HVT, Marques ACR, Zurbau A, Mejia SB, et al. The effect of viscous soluble fiber on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2018;28(1):3–13. https://doi.org/10.1016/j.numecd.2017.09.007.

  42. Streppel MT. Dietary fiber and blood pressure. Arch Intern Med. 2005;165(2):150–6. https://doi.org/10.1001/archinte.165.2.150.

    Article  PubMed  Google Scholar 

  43. Whelton SP, Hyre AD, Pedersen B, Yi Y, Whelton PK, He J. Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J Hypertens. 2005;23(3):475–81. https://doi.org/10.1097/01.hjh.0000160199.51158.cf.

    Article  CAS  PubMed  Google Scholar 

  44. Sun B, Shi X, Wang T, Zhang D. Exploration of the association between dietary fiber intake and hypertension among U.S. adults using 2017 American College of Cardiology/American Heart Association blood pressure guidelines: NHANES 2007–2014. Nutrients. 2018;10(8):1091. https://doi.org/10.3390/nu10081091.

    Article  CAS  PubMed Central  Google Scholar 

  45. Lie L, Brown L, Forrester TE, et al. The association of dietary fiber intake with cardiometabolic risk in four countries across the epidemiologic transition. Nutrients. 2018;10(5). https://doi.org/10.3390/nu10050628.

  46. Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. 2019;139(11):1407–21. https://doi.org/10.1161/circulationaha.118.036652.

  47. Yeo S-K, Ooi L-G, Lim T-J, Liong M-T. Antihypertensive properties of plant-based prebiotics. Int J Mol Sci. 2009;10(8):3517–30.

    Article  CAS  Google Scholar 

  48. Marques FZ, Nelson E, Chu P-Y, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–77.

  49. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER, et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids. JAMA. 2005;294(19):2455–64. https://doi.org/10.1001/jama.294.19.2455.

  50. He J, Gu D, Wu X, Chen J, Duan X, Chen J, et al. Effect of soybean protein on blood pressure: a randomized, controlled trial. Ann Intern Med. 2005;143(1):1–9.

  51. He J, Wofford MR, Reynolds K, Chen J, Chen CS, Myers L, et al. Effect of dietary protein supplementation on blood pressure. Circulation. 2011;124(5):589–95. https://doi.org/10.1161/circulationaha.110.009159.

  52. Rebholz CM, Friedman EE, Powers LJ, Arroyave WD, He J, Kelly TN. Dietary protein intake and blood pressure: a meta-analysis of randomized controlled trials. Am J Epidemiol. 2012;176(suppl_7):S27–43. https://doi.org/10.1093/aje/kws245.

    Article  PubMed  Google Scholar 

  53. Teunissen-Beekman KFM, Dopheide J, Geleijnse JM, Bakker SJL, Brink EJ, de Leeuw PW, et al. Protein supplementation lowers blood pressure in overweight adults: effect of dietary proteins on blood pressure (PROPRES), a randomized trial. Am J Clin Nutr. 2012;95(4):966–71.

  54. de Cabo R, de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. New Engl J Med. 2019;381(26):2541–51. https://doi.org/10.1056/nejmra1905136.

    Article  CAS  PubMed  Google Scholar 

  55. Malinowski B, Zalewska K, Węsierska A, Sokołowska MM, Socha M, Liczner G, et al. Intermittent fasting in cardiovascular disorders—an overview. Nutrients. 2019;11(3):673. https://doi.org/10.3390/nu11030673.

  56. Wilhelmi de Toledo F, Grundler F, Bergouignan A, Drinda S, Michalsen A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS One. 2019;14(1):e0209353.

    Article  CAS  Google Scholar 

  57. Adrogué HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med. 2007;356(19):1966–78.

    Article  Google Scholar 

  58. Whelton PK, Appel LJ, Sacco RL, Anderson CAM, Antman EM, Campbell N, et al. Sodium, blood pressure, and cardiovascular disease. Circulation. 2012;126(24):2880–9. https://doi.org/10.1161/cir.0b013e318279acbf.

  59. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2020;12:CD004022.

    PubMed  Google Scholar 

  60. ISo N. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Official Journal of the International Society of Nephrology KDIGO. 2012;2(5).

  61. Guideline: Sodium Intake for Adults and Children. World Health Organization; 2013.

  62. Filippini T, Malavolti M, Whelton PK, Naska A, Orsini N, Vinceti M. Blood pressure effects of sodium reduction: dose-response meta-analysis of experimental studies. Circulation. 2021;143(16):1542–67 This meta-analysis of 85 trials examining the association of sodium intake with blood pressure showed a linear relationship between sodium intake, systolic blood pressure, and diastolic blood pressure. The association between sodium intake and blood pressure was stronger for persons with hypertension compared to those with normal blood pressure.

    Article  CAS  Google Scholar 

  63. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation. 2010;121(4):586–613.

  64. U.S. Department of Agriculture, Agricultural Research Service. Nutrient intakes from food and beverages: mean amounts consumed per individual, by gender and age, what we eat in America, NHANES 2017-2018.; 2020.

  65. Anderson CAM, Appel LJ, Okuda N, Brown IJ, Chan Q, Zhao L, et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J Am Diet Assoc. 2010;110(5):736–45.

  66. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42(9):1235–481.

  67. Hisamatsu T, Segawa H, Kadota A, Ohkubo T, Arima H, Miura K. Epidemiology of hypertension in Japan: beyond the new 2019 Japanese guidelines. Hypertens Res. 2020;43(12):1344–51.

    Article  CAS  Google Scholar 

  68. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM, et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47(2):296–308.

  69. He FJ, Li J, GA MG. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346(apr03 3):f1325–5. https://doi.org/10.1136/bmj.f1325.

  70. Pimenta E, Gaddam KK, Oparil S, Aban I, Husain S, Dell'Italia LJ, et al. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension. Hypertension. 2009;54(3):475–81. https://doi.org/10.1161/hypertensionaha.109.131235.

  71. Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277(20):1624–32.

  72. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346(apr03 3):f1378–8. https://doi.org/10.1136/bmj.f1378.

  73. Binia A, Jaeger J, Hu Y, Singh A, Zimmermann D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure. J Hypertens. 2015;33(8):1509–20. https://doi.org/10.1097/hjh.0000000000000611.

    Article  CAS  PubMed  Google Scholar 

  74. Castro H, Raij L. Potassium in hypertension and cardiovascular disease. Semin Nephrol. 2013;33(3):277–89.

    Article  CAS  Google Scholar 

  75. Siani A, Strazzullo P, Giacco A, Pacioni D, Celentano E, Mancini M. Increasing the dietary potassium intake reduces the need for antihypertensive medication. Ann Intern Med. 1991;115(10):753–9.

    Article  CAS  Google Scholar 

  76. Perez V, Chang ET. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv Nutr. 2014;5(6):712–41.

    Article  CAS  Google Scholar 

  77. Nowson CA, Morgan TO. Change in blood pressure in relation to change in nutrients effected by manipulation of dietary sodium and potassium. Clin Exp Pharmacol Physiol. 1988;15(3):225–42.

    Article  CAS  Google Scholar 

  78. Whelton PK. Sodium and potassium intake in US adults. Circulation. 2018;137(3):247–9.

    Article  Google Scholar 

  79. Stranges S, Wu T, Dorn JM, Freudenheim JL, Muti P, Farinaro E, et al. Relationship of alcohol drinking pattern to risk of hypertension. Hypertension. 2004;44(6):813–9. https://doi.org/10.1161/01.hyp.0000146537.03103.f2.

  80. Beilin LJ, Puddey IB. Alcohol and hypertension. Hypertension. 2006;47(6):1035–8. https://doi.org/10.1161/01.hyp.0000218586.21932.3c.

    Article  CAS  PubMed  Google Scholar 

  81. Roerecke M, Kaczorowski J, Tobe SW, Gmel G, Hasan OSM, Rehm J. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health. 2017;2(2):e108–20. https://doi.org/10.1016/s2468-2667(17)30003-8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lawlor DA, Nordestgaard BG, Benn M, Zuccolo L, Tybjaerg-Hansen A, Davey SG. Exploring causal associations between alcohol and coronary heart disease risk factors: findings from a Mendelian randomization study in the Copenhagen General Population Study. Eur Heart J. 2013;34(32):2519–28. https://doi.org/10.1093/eurheartj/eht081.

    Article  CAS  PubMed  Google Scholar 

  83. Xin X, He J, Frontini MG, Ogden LG, Motsamai OI, Whelton PK. Effects of alcohol reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2001;38(5):1112–7.

    Article  CAS  Google Scholar 

  84. Drinking Levels Defined. Accessed March 21, 2021. https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking

  85. Beulens JWJ, Rimm EB, Ascherio A, Spiegelman D, Hendriks HFJ, Mukamal KJ. Alcohol consumption and risk for coronary heart disease among men with hypertension. Ann Intern Med. 2007;146(1):10–9. https://doi.org/10.7326/0003-4819-146-1-200701020-00004.

    Article  PubMed  Google Scholar 

  86. Bryson CL, Mukamal KJ, Mittleman MA, Fried LP, Hirsch CH, Kitzman DW, et al. The association of alcohol consumption and incident heart failure. J Am Coll Cardiol. 2006;48(2):305–11. https://doi.org/10.1016/j.jacc.2006.02.066.

  87. Djoussé L, Michael GJ. Alcohol consumption and risk of heart failure in the physicians’ health study I. Circulation. 2007;115(1):34–9. https://doi.org/10.1161/circulationaha.106.661868.

    Article  PubMed  Google Scholar 

  88. Huang C, Zhan J, Liu Y-J, Li D-J, Wang S-Q, He Q-Q. Association between alcohol consumption and risk of cardiovascular disease and all-cause mortality in patients with hypertension: a meta-analysis of prospective cohort studies. Mayo Clin Proc. 2014;89(9):1201–10. https://doi.org/10.1016/j.mayocp.2014.05.014.

    Article  PubMed  Google Scholar 

  89. Larsson SC, Drca N, Wolk A. Alcohol consumption and risk of atrial fibrillation. J Am Coll Cardiol. 2014;64(3):281–9. https://doi.org/10.1016/j.jacc.2014.03.048.

    Article  CAS  PubMed  Google Scholar 

  90. Wang J, Xiong X, Liu W. Yoga for Essential hypertension: a systematic review. PLoS ONE. 2013;8(10):e76357. https://doi.org/10.1371/journal.pone.0076357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Laukkanen JA, Laukkanen T, Kunutsor SK. Cardiovascular and other health benefits of sauna bathing: a review of the evidence. Mayo Clin Proc. 2018;93(8):1111–21.

    Article  Google Scholar 

  92. Khalesi S, Sun J, Buys N, Jamshidi A, Nikbakht-Nasrabadi E, Khosravi-Boroujeni H. Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. Eur J Nutr. 2014;53(6):1299–311.

    Article  CAS  Google Scholar 

  93. Greyling A, Ras RT, Zock PL, Lorenz M, Hopman MT, Thijssen DHJ, et al. The effect of black tea on blood pressure: a systematic review with meta-analysis of randomized controlled trials. PLoS One. 2014;9(7):e103247.

  94. Laukkanen T, Kunutsor SK, Zaccardi F, et al. Acute effects of sauna bathing on cardiovascular function. J Hum Hypertens. 2018;32(2):129–38 This study of 102 participants with at least one cardiovascular disease risk factor demonstrated a 7 mm reduction in both systolic and diastolic blood pressure after one 30 minute sauna session. These findings highlight the potential benefits for nontraditional approaches to blood pressure lowering.

    Article  Google Scholar 

  95. Dickinson HO, Campbell F, Beyer FR, Nicolson DJ, Cook JV, Ford GA, et al. Relaxation therapies for the management of primary hypertension in adults: a Cochrane review. J Human Hypertens. 2008;22(12):809–20. https://doi.org/10.1038/jhh.2008.65.

  96. Canter PH, Ernst E. Insufficient evidence to conclude whether or not transcendental meditation decreases blood pressure. J Hypertens. 2004;22(11):2049–54. https://doi.org/10.1097/00004872-200411000-00002.

    Article  CAS  PubMed  Google Scholar 

  97. Nagele E, Jeitler K, Horvath K, Semlitsch T, Posch N, Herrmann KH, et al. Clinical effectiveness of stress-reduction techniques in patients with hypertension. J Hypertens. 2014;32(10):1936–44. https://doi.org/10.1097/hjh.0000000000000298.

  98. Burke LE, Ma J, Azar KMJ, Bennett GG, Peterson ED, Zheng Y, et al. Current science on consumer use of mobile health for cardiovascular disease prevention. Circulation. 2015;132(12):1157–213. https://doi.org/10.1161/cir.0000000000000232.

  99. Walsh JA, Topol EJ, Steinhubl SR. Novel wireless devices for cardiac monitoring. Circulation. 2014;130(7):573–81. https://doi.org/10.1161/circulationaha.114.009024.

    Article  PubMed  PubMed Central  Google Scholar 

  100. ASM M, Yoo I, Sheets L. A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak. 2012;12(1). https://doi.org/10.1186/1472-6947-12-67.

  101. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019;381(20):1909–17.

  102. Andre N, Wibawanti R, Siswanto BB. Mobile phone-based intervention in hypertension management. Int J Hypertens. 2019;2019:9021017.

    Article  Google Scholar 

  103. Xu H, Long H. The effect of smartphone app–based interventions for patients with hypertension: systematic review and meta-analysis. JMIR mHealth and uHealth. 2020;8(10):e21759 This meta-analysis of 8 studies examining the effect of smart phone apps on blood pressure control demonstrated a significant reduction in systolic blood pressure and a significant improvement in medication adherence. This study highlights the potential usefulness of mobile health technology for blood pressure control and medication adherence.

    Article  Google Scholar 

  104. Chandler J, Sox L, Kellam K, Feder L, Nemeth L, Treiber F. Impact of a culturally tailored mHealth medication regimen self-management program upon blood pressure among hypertensive Hispanic adults. Int J Environ Res Public Health. 2019;16(7). https://doi.org/10.3390/ijerph16071226.

  105. Persell SD, Peprah YA, Lipiszko D, Lee JY, Li JJ, Ciolino JD, et al. Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: a randomized clinical trial. JAMA Network Open. 2020;3(3):e200255–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seamus P. Whelton.

Ethics declarations

Conflict of Interest

All authors have nothing to disclose.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goetsch, M.R., Wagle, A.A., Valilis, E.M. et al. Dietary and Lifestyle Modification for the Prevention and Treatment of Hypertension. Curr Cardiovasc Risk Rep 15, 21 (2021). https://doi.org/10.1007/s12170-021-00683-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12170-021-00683-7

Keywords

Navigation