Skip to main content

Advertisement

Log in

Frontiers in Transradial Catheterization and Intervention: Challenges and Advances in the “New Gold Standard” for Vascular Access

  • Secondary Prevention and Intervention (D. Steinberg, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we discuss contemporary safety and efficacy data relevant to both interventional cardiology and interventional radiology. We also touch upon technical considerations and advances in transradial techniques. We detail the available randomized clinical trial data as well as insights gained from recent meta-analyses. The strengths and limitations as well as the potential for expanding the use of transradial approach (TRA) across catheter-based interventions are also discussed.

Recent Findings

The TRA for coronary and vascular intervention has slowly gained global acceptance over the past 10 years, with a notable uptick in US adoption over the past 5 years.

Summary

This shift in practice is largely ascribable to proven superiority in its safety profile over a standard transfemoral arterial approach (TFA) especially in the context of coronary intervention performed in high-risk patient populations and for emergent indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Campeau L. Percutaneous radial artery approach for coronary angiography. Catheter Cardiovasc Diagn. 1989;16(1):3–7.

    Article  CAS  Google Scholar 

  2. Kiemeneij F, Laarman GJ. Percutaneous transradial artery approach for coronary stent implantation. Catheter Cardiovasc Diagn. 1993;30(2):173–8.

    Article  CAS  Google Scholar 

  3. Saito S, Miyake S, Hosokawa G, Tanaka S, Kawamitsu K, Kaneda H, et al. Transradial coronary intervention in Japanese patients. Catheter Cardiovasc Interv. 1999;46(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  4. Schneider JE, Mann T, Cubeddu MG, Arrowood ME. Transradial coronary stenting: a United States experience. J Invasive Cardiol. 1997;9(9):569–74.

    CAS  PubMed  Google Scholar 

  5. Kiemeneij F, Laarman GJ, de Melker E. Transradial artery coronary angioplasty. Am Heart J. 1995;129(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Rao SV, Ou FS, Wang TY, Roe MT, Brindis R, Rumsfeld JS, et al. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: a report from the National Cardiovascular Data Registry. JACC Cardiovasc Interv. 2008;1(4):379–86.

    Article  PubMed  Google Scholar 

  7. • Feldman DN, Swaminathan RV, Kaltenbach LA, Baklanov DV, Kim LK, Wong SC, et al. Adoption of radial access and comparison of outcomes to femoral access in percutaneous coronary intervention: an updated report from the National Cardiovascular Data Registry (2007-2012). Circulation. 2013;127(23):2295–306. The 2013 report by Feldman, et al. from the NCDR reviews the trajectory of transradial intervention in the USA and details contemporary, real-world outcomes with TRI vs. TFI.

    Article  PubMed  Google Scholar 

  8. Nathan S, Rao SV. Radial versus femoral access for percutaneous coronary intervention: implications for vascular complications and bleeding. Curr Cardiol Rep. 2012;14(4):502–9.

    Article  PubMed  Google Scholar 

  9. Kirtane AJ, Piazza G, Murphy SA, et al. Correlates of bleeding events among moderate-to high-risk patients undergoing percutaneous coronary intervention and treated with eptifibatide: observations from the PROTECT-TIMI-30 trial. J Am Coll Cardiol. 2006;47:2374–9.

    Article  CAS  PubMed  Google Scholar 

  10. Feit F, Voeltz MD, Attubato MJ, et al. Predictors and impact of major hemorrhage on mortality following percutaneous coronary intervention from the REPLACE-2 trial. Am J Cardiol. 2007;100:1364–9.

    Article  PubMed  Google Scholar 

  11. Mehta SK, Frutkin AD, Lindsey JB, et al. Bleeding in patients undergoing percutaneous coronary intervention: the development of a clinical risk algorithm from the National Cardiovascular Data Registry. Circ Cardiovasc Interv. 2009;2:222–9.

    Article  PubMed  Google Scholar 

  12. Doyle BJ, Ting HH, Bell MR, et al. Major femoral bleeding complications after percutaneous coronary intervention. Incidence, predictors, and impact on long-term survival among 17,901 patients treated at the Mayo Clinic from 1994 to 2005. J Am Coll Cardiol Cardiovasc Interv. 2008;1:202–9.

    Article  Google Scholar 

  13. Kinnaird TD, Stabile E, Mintz GS, et al. Incidence, predictors, and prognostic implications of bleeding and blood transfusion following percutaneous coronary interventions. Am J Cardiol. 2003;92:930–5.

    Article  PubMed  Google Scholar 

  14. Ndrepepa G, Berger PB, Mehilli J, et al. Periprocedural bleeding and 1-year outcome after percutaneous coronary interventions: appropriateness of including bleeding as a component of a quadruple end point. J Am Coll Cardiol. 2008;51:690–7.

    Article  PubMed  Google Scholar 

  15. Manoukian SV, Feit F, Mehran R, et al. Impact of major bleeding on 30-day mortality and clinical outcomes in patients with acute coronary syndromes: an analysis from the ACUITY trial. J Am Coll Cardiol. 2007;49:1362–8.

    Article  PubMed  Google Scholar 

  16. Stone GW, Witzenbichler B, Guagliumi G, et al. Bivalirudin during primary PCI in acute myocardial infarction. N Engl J Med. 2008;358:2218–30.

    Article  CAS  PubMed  Google Scholar 

  17. Arora N, Matheny ME, Sepke C, et al. Practices and complications of vascular closure devices and manual compression in patients undergoing elective transfemoral coronary procedures. Am Heart J. 2007;153:606211.

    Article  Google Scholar 

  18. Smilowitz NR, Kirtane AJ, Guiry M, et al. Practices and complications of vascular closure devices and manual compression in patients undergoing elective transfemoral coronary procedures. Am J Cardiol. 2012;

  19. Applegate RJ, Sacrinty MT, Kutcher MA, et al. Trends in vascular complications after diagnostic cardiac catheterization and percutaneous coronary intervention via the femoral artery, 1998 to 2007. J Am Coll Cardiol Cardiovasc Interv. 2008;1:317–26.

    Article  Google Scholar 

  20. Vaitkus PT. A meta-analysis of percutaneous vascular closure devices after diagnostic catheterization and percutaneous coronary intervention. J Invasive Cardiol. 2004;16:243–6.

    PubMed  Google Scholar 

  21. Nikolsky E, Mehran R, Halkin A, et al. Vascular complications associated with arteriotomy closure devices in patients undergoing percutaneous coronary procedures: a meta-analysis. J Am Coll Cardiol. 2004;44:1200–9.

    PubMed  Google Scholar 

  22. Koreny M, Riedmuller E, Nikfardjam M, et al. Arterial puncture closing devices compared with standard manual compression after cardiac catheterization: systematic review and meta-analysis. J Am Med Assoc. 2004;291:350–7.

    Article  CAS  Google Scholar 

  23. Burzotta F, Trani C, Mazzari MA, et al. Vascular complications and access crossover in 10,676 transradial percutaneous coronary procedures. Am Heart J. 2012;163:230–8.

    Article  PubMed  Google Scholar 

  24. Mitchell MD, Hong JA, Lee BY, Umscheid CA, Bartsch SM, Don CW. Systematic review and cost-benefit analysis of radial artery access for coronary angiography and intervention. Circ Cardiovasc Qual Outcomes. 2012;5(4):454–62.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Amin AP, House JA, Safley DM, Chhatriwalla AK, Giersiefen H, Bremer A, et al. Costs of transradial percutaneous coronary intervention. JACC Cardiovasc Interv. 2013;6(8):827–34.

    Article  PubMed  Google Scholar 

  26. Amin AP, Patterson M, House JA, Giersiefen H, Spertus JA, Baklanov DV, Chhatriwalla AK, Safley DM, Cohen DJ, Rao SV, Marso SP. Costs associated with access site and same-day discharge among Medicare beneficiaries undergoing percutaneous coronary intervention. JACC: Cardiovasc Interv. 2017.

  27. Jolly SS, Yusuf S, Cairns J, Niemela K, Xavier D, Widimsky P, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011;377(9775):1409–20.

    Article  PubMed  Google Scholar 

  28. Mehta SR, Jolly SS, Cairns J, et al. Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol. 2012;60:2490–9.

    Article  PubMed  Google Scholar 

  29. Romagnoli E, Biondi-Zoccai G, Sciahbasi A, Politi L, Rigattieri S, Pendenza G, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol. 2012;60(24):2481–9.

    Article  PubMed  Google Scholar 

  30. Bernat I, Horak D, Stasek J, Mates M, Pesek J, Ostadal P, et al. ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial: the STEMI-RADIAL trial. J Am Coll Cardiol. 2014;63(10):964–72.

    Article  PubMed  Google Scholar 

  31. •• Valgimigli M, Gagnor A, Calabró P, Frigoli E, Leonardi S, Zaro T, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015;385(9986):2465–76. The MATRIX trial represents the single largest randomized controlled trial of TRI vs. TFI conducted to date with a focus on unselected patients with acute coronary syndromes. This publication also includes a nested meta-analysis inclusive of the RIVAL trial data, pre- and post-RIVAL RCTs, and MATRIX .

    Article  PubMed  Google Scholar 

  32. • Ferrante G, Rao SV, Juni P, Da Costa BR, Reimers B, Condorelli G, et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease: a meta-analysis of randomized trials. J Am Coll Card Cardiovasc Interv. 2016;9(14):1419–34. The meta-analysis by Ferrante, et al. analyzes the totality of TRI vs. TFI data, dividing it into stable vs. ACS indications and providing number needed to treat to benefit for each of the major clinical endpoints of interest.

    Article  Google Scholar 

  33. Fischman AM, Swinburne NC, Patel RS. A technical guide describing the use of transradial access technique for endovascular interventions. Tech Vasc Interventional Rad. 2015;18:58–65.

    Article  Google Scholar 

  34. Resnick NJ, Kim E, Patel RS, et al. Uterine artery embolization using a transradial approach: initial experience and technique. Journal of vascular and interventional radiology: JVIR. 2014;25(3):443–7. https://doi.org/10.1016/j.jvir.2013.11.010.

    Article  PubMed  Google Scholar 

  35. Posham R, Biederman DM, Patel RS, et al. Transradial approach for noncoronary interventions: a single-center review of safety and feasibility in the first 1,500 cases. J Vasc Interv Radiol. 2015; https://doi.org/10.1016/j.jvir.2015.10.026.

  36. Weiss C, Akinwande O, Paudel K, et al. Bariatric embolization of arteries for the treatment of obesity (BEAT Obesity): 3-month safety and efficacy data. J Vasc Interv Radiol. 27(3):S10.

  37. Mortensen C, De Korompay N, Hersey N, Loh S, Chung J, Liu D, et al. Transradial approach for uterine artery embolization: too many shades of grey? J Vasc Interv Radiol. 27(3):S202.

  38. Lupattelli T, Clerissi J, Clerici G, et al. The efficacy and safety of closure of brachial access using the AngioSeal closure device: experience with 161 interventions in diabetic patients with critical limb ischemia. J Vasc Surg. 2008;47(4):782–8.

    Article  PubMed  Google Scholar 

  39. Parviz Y, Rowe R, Vijayan S, et al. Percutaneous brachial artery access for coronary artery procedures: feasible and safe in the current era. Cardiovasc Revasc Med. 2015;16(8):447–9.

    Article  PubMed  Google Scholar 

  40. Patel VG, Brayton KM, Kumbhani DJ, et al. Meta-analysis of stroke after transradial versus transfemoral artery catheterization. Int J Cardiol. 2013;168(6):5234–8. https://doi.org/10.1016/j.ijcard.2013.08.026.

    Article  PubMed  Google Scholar 

  41. Rao SV, Turi ZG, Wong SC, Brener SJ, Stone GW. Radial versus femoral access. J Am Coll Cardiol. 2013;62(17 Suppl):S11–20. https://doi.org/10.1016/j.jacc.2013.08.700.

    Article  PubMed  Google Scholar 

  42. Gupta S, Nathan S. Radial artery use and reuse. Cardiac Interv Today. 2015;9:49–56.

    Google Scholar 

  43. Kotowycz MA, Dzavík V. Radial artery patency after transradial catheterization. Circ Cardiovasc Interv. 2012;5:127–33.

    Article  PubMed  Google Scholar 

  44. Stella PR, Kiemeneij F, Laarman GJ, et al. Incidence and outcome of radial artery occlusion following transradial artery coronary angioplasty. Catheter Cardiovasc Diagn. 1997;40:156–8.

    Article  CAS  Google Scholar 

  45. Uhlemann M, Möbius-Winkler S, Mende M, et al. The Leipzig prospective vascular ultrasound registry in radial artery catheterization: impact of sheath size on vascular complications. J Am Coll Cardiol Cardiovasc Interv. 2012;5:36–43.

    Article  Google Scholar 

  46. Rao SV. Observations from a transradial registry: our remedies oft in ourselves do lie. J Am Coll Cardiol Cardiovasc Interv. 2012;5:44–6.

    Article  Google Scholar 

  47. Bernat I, Bertrand OF, Rokyta R, et al. Efficacy and safety of transient ulnar artery compression to recanalize acute radial artery occlusion after transradial catheterization. Am J Cardiol. 2011;107:1698–701.

    Article  PubMed  Google Scholar 

  48. Sattur S, Singh M, Kaluski E. Transulnar access for coronary angiography and percutaneous coronary intervention. J Inv Cardiol. 2014;26(8):404–8.

    Google Scholar 

  49. Dahal K, Rijal J, Lee J, et al. Transulnar versus transradial access for coronary angiography or percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Cath Cardiovasc Interv. 2016;87:857–65.

    Article  Google Scholar 

  50. Gupta S, Nathan S, Perlowski AA. Basics of radial artery access. Cardiac Interventions Today. 2013. http://citoday.com/pdfs/cit0713_F1_Perlowski.pdf.

  51. Rao SV, Tremmel JA, Gilchrist IC, et al. Catheter Cardiovasc Interv. 2014 Feb;83(2):228–36. https://doi.org/10.1002/ccd.25209.

    Article  PubMed  Google Scholar 

  52. Nathan S. Transradial approach in the youngest smallest patient reported to date: how slender is too slender? Oral presentation at Slender Club Japan Live Demonstration and 10th Annual Meeting. Shinagawa, Tokyo, Japan, April 14–16, 2017.

  53. Takeshita S, Asano H, Hata T, et al. Comparison of frequency of radial artery occlusion after 4Fr versus 6Fr transradial coronary intervention (from the Novel Angioplasty USIng Coronary Accessor Trial). Am J Cardiol. 2014;113(12):1986–9.

    Article  PubMed  Google Scholar 

  54. Rhyne D, Mann T. Hand ischemia resulting from a transradial intervention: successful management with radial artery angioplasty. Catheter Cardiovasc Interv. 2010;76:383–6.

    Article  PubMed  Google Scholar 

  55. Data on file, Asahi Intecc, Ltd. http://www.asahi-intecc.com/medical/international/product/gc_se.php. Accessed September 6, 2017.

  56. Data on file, Terumo Interventional Systems. http://www.terumois.com/products/access/glidesheath-slender.html. Accessed September 6, 2017.

  57. Lee L, Blair J, Gupta S, Nathan S. Upper extremity vascular complications following transradial approach for cardiac catheterization and intervention: a focused review of diagnostic, prognostic and therapeutic considerations. Minerva Cardioangiol. 2016;

  58. Dieter RS, Akef A, Wolff M. Eversion endarterectomy complicating radial artery access for left heart catheterization. Catheter Cardiovasc Interv. 2003;58:478–80.

    Article  PubMed  Google Scholar 

  59. Mouawad NJ, Capers Q, Allen C, James I, Haurani MJ. Complete “in situ” avulsion of the radial artery complicating transradial coronary rotational atherectomy. Ann Vasc Surg. 2015;29:123.e7–11.

    Article  Google Scholar 

  60. Arzamendi D, Romeo P, Gosselin G. Radial artery avulsion: a rare complication of percutaneous coronary intervention. Rev Esp Cardiol. 2011;64:62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Nathan.

Ethics declarations

Conflict of Interest

Drs. Klass has disclosed that he has served as a consultant for Merit Medical. Dr. Nathan has disclosed that he has served as a consultant for Merit Medical, Terumo Interventional Systems and Medtronic, Inc. The remaining authors have no disclosures to share.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

This article is part of the Topical Collection on Secondary Prevention and Intervention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirai, T., Conway, B.D., Paul, J. et al. Frontiers in Transradial Catheterization and Intervention: Challenges and Advances in the “New Gold Standard” for Vascular Access. Curr Cardiovasc Risk Rep 11, 37 (2017). https://doi.org/10.1007/s12170-017-0562-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-017-0562-5

Keywords

Navigation