Skip to main content
Log in

Can Implantable Cardiac Devices Be Used to Lower Risk of Stroke?

  • Arrhythmias (J. Bunch, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Implantable cardiac devices provide continuous heart rhythm monitoring. Device-detected atrial high rate episodes (AHREs) are commonly encountered; however, there is no consensus on how this information is best applied to prevention of stroke. This article provides an overview of the current literature on AHREs, stroke prevention, and evolving areas of investigation.

Recent Findings

AHREs predict increased thromboembolic risk at durations of 24 h or less. Shorter cutoffs have been less consistently associated with risk.

Summary

There is clinical equipoise for the use of oral anticoagulation for device-detected subclinical atrial fibrillation alone. Very short episodes may not require action beyond continued monitoring. Studies are ongoing to address the use of oral anticoagulation for device-detected subclinical AHREs alone, as well as tailored anticoagulation in response to AHREs in those with known history of AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370–5.

    Article  CAS  PubMed  Google Scholar 

  2. • Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114(2):119–25. doi:10.1161/CIRCULATIONAHA.105.595140. A projection of future AF prevalence.

  3. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013;112(8):1142–7. doi:10.1016/j.amjcard.2013.05.063.

    Article  PubMed  Google Scholar 

  4. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110(9):1042–6. doi:10.1161/01.CIR.0000140263.20897.42.

    Article  PubMed  Google Scholar 

  5. Kim MH, Johnston SS, Chu BC, Dalal MR, Schulman KL. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ Cardiovasc Qual Outcomes. 2011;4(3):313–20. doi:10.1161/CIRCOUTCOMES.110.958165.

    Article  PubMed  Google Scholar 

  6. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292. doi:10.1161/01.cir.0000441139.02102.80.

    Article  PubMed  Google Scholar 

  7. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–962. doi:10.1093/eurheartj/ehw210.

    Article  PubMed  Google Scholar 

  8. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22(8):983–8.

    Article  CAS  PubMed  Google Scholar 

  9. Saxena R, Lewis S, Berge E, Sandercock PA, Koudstaal PJ. Risk of early death and recurrent stroke and effect of heparin in 3169 patients with acute ischemic stroke and atrial fibrillation in the International Stroke Trial. Stroke. 2001;32(10):2333–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kimura K, Minematsu K, Yamaguchi T. Japan Multicenter Stroke Investigators C. Atrial fibrillation as a predictive factor for severe stroke and early death in 15,831 patients with acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2005;76(5):679–83. doi:10.1136/jnnp.2004.048827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285(22):2864–70.

    Article  CAS  PubMed  Google Scholar 

  12. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–72. doi:10.1378/chest.09-1584.

    Article  PubMed  Google Scholar 

  13. Mason PK, Lake DE, DiMarco JP, Ferguson JD, Mangrum JM, Bilchick K, et al. Impact of the CHA2DS2-VASc score on anticoagulation recommendations for atrial fibrillation. Am J Med. 2012;125(6):603 e1–6. doi:10.1016/j.amjmed.2011.09.030.

    Article  Google Scholar 

  14. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64(21):e1–76. doi:10.1016/j.jacc.2014.03.022.

    Article  PubMed  Google Scholar 

  15. Indredavik B, Rohweder G, Lydersen S. Frequency and effect of optimal anticoagulation before onset of ischaemic stroke in patients with known atrial fibrillation. J Intern Med. 2005;258(2):133–44. doi:10.1111/j.1365-2796.2005.01512.x.

    Article  CAS  PubMed  Google Scholar 

  16. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91. doi:10.1056/NEJMoa1009638.

    Article  CAS  PubMed  Google Scholar 

  17. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92. doi:10.1056/NEJMoa1107039.

    Article  CAS  PubMed  Google Scholar 

  18. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51. doi:10.1056/NEJMoa0905561.

    Article  CAS  PubMed  Google Scholar 

  19. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017; doi:10.1016/j.hrthm.2017.05.012.

  20. Page RL, Wilkinson WE, Clair WK, McCarthy EA, Pritchett EL. Asymptomatic arrhythmias in patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular tachycardia. Circulation. 1994;89(1):224–7.

    Article  CAS  PubMed  Google Scholar 

  21. Strickberger SA, Ip J, Saksena S, Curry K, Bahnson TD, Ziegler PD. Relationship between atrial tachyarrhythmias and symptoms. Heart Rhythm. 2005;2(2):125–31. doi:10.1016/j.hrthm.2004.10.042.

    Article  PubMed  Google Scholar 

  22. Quirino G, Giammaria M, Corbucci G, Pistelli P, Turri E, Mazza A, et al. Diagnosis of paroxysmal atrial fibrillation in patients with implanted pacemakers: relationship to symptoms and other variables. Pacing Clin Electrophysiol. 2009;32(1):91–8. doi:10.1111/j.1540-8159.2009.02181.x.

    Article  PubMed  Google Scholar 

  23. Buch E, Boyle NG, Belott PH. Pacemaker and defibrillator lead extraction. Circulation. 2011;123(11):e378–80. doi:10.1161/CIRCULATIONAHA.110.987354.

    Article  PubMed  Google Scholar 

  24. Defaye P, Dournaux F, Mouton E. Prevalence of supraventricular arrhythmias from the automated analysis of data stored in the DDD pacemakers of 617 patients: the AIDA study. The AIDA Multicenter Study Group. Automatic interpretation for diagnosis assistance. Pacing Clin Electrophysiol. 1998;21(1 Pt 2):250–5.

    Article  CAS  PubMed  Google Scholar 

  25. Cheung JW, Keating RJ, Stein KM, Markowitz SM, Iwai S, Shah BK, et al. Newly detected atrial fibrillation following dual chamber pacemaker implantation. J Cardiovasc Electrophysiol. 2006;17(12):1323–8. doi:10.1111/j.1540-8167.2006.00648.x.

    Article  PubMed  Google Scholar 

  26. Orlov MV, Ghali JK, Araghi-Niknam M, Sherfesee L, Sahr D, Hettrick DA, et al. Asymptomatic atrial fibrillation in pacemaker recipients: incidence, progression, and determinants based on the atrial high rate trial. Pacing Clin Electrophysiol. 2007;30(3):404–11. doi:10.1111/j.1540-8159.2007.00682.x.

    Article  PubMed  Google Scholar 

  27. Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366(2):120–9. doi:10.1056/NEJMoa1105575.

    Article  CAS  PubMed  Google Scholar 

  28. Ziegler PD, Glotzer TV, Daoud EG, Singer DE, Ezekowitz MD, Hoyt RH, et al. Detection of previously undiagnosed atrial fibrillation in patients with stroke risk factors and usefulness of continuous monitoring in primary stroke prevention. Am J Cardiol. 2012;110(9):1309–14. doi:10.1016/j.amjcard.2012.06.034.

    Article  PubMed  Google Scholar 

  29. •• Flaker GC, Belew K, Beckman K, Vidaillet H, Kron J, Safford R, et al. Asymptomatic atrial fibrillation: demographic features and prognostic information from the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J. 2005;149(4):657–63. doi:10.1016/j.ahj.2004.06.032. Article discusses demographic features and prognostic information from AF in a study of over 4060 patients.

    Article  PubMed  Google Scholar 

  30. Tomson TT, Passman R. Management of device-detected atrial high-rate episodes. Card Electrophysiol Clin. 2015;7(3):515–25. doi:10.1016/j.ccep.2015.05.010.

    Article  PubMed  Google Scholar 

  31. Passman RS, Weinberg KM, Freher M, Denes P, Schaechter A, Goldberger JJ, et al. Accuracy of mode switch algorithms for detection of atrial tachyarrhythmias. J Cardiovasc Electrophysiol. 2004;15(7):773–7. doi:10.1046/j.1540-8167.2004.03537.x.

    Article  PubMed  Google Scholar 

  32. Purerfellner H, Gillis AM, Holbrook R, Hettrick DA. Accuracy of atrial tachyarrhythmia detection in implantable devices with arrhythmia therapies. Pacing Clin Electrophysiol. 2004;27(7):983–92. doi:10.1111/j.1540-8159.2004.00569.x.

    Article  PubMed  Google Scholar 

  33. Pollak WM, Simmons JD, Interian A Jr, Atapattu SA, Castellanos A, Myerburg RJ, et al. Clinical utility of intraatrial pacemaker stored electrograms to diagnose atrial fibrillation and flutter. Pacing Clin Electrophysiol. 2001;24(4 Pt 1):424–9.

    Article  CAS  PubMed  Google Scholar 

  34. Swiryn S, Orlov MV, Benditt DG, DiMarco JP, Lloyd-Jones DM, Karst E, et al. Clinical implications of brief device-detected atrial tachyarrhythmias in a cardiac rhythm management device population: results from the registry of atrial tachycardia and atrial fibrillation episodes. Circulation. 2016;134(16):1130–40. doi:10.1161/CIRCULATIONAHA.115.020252.

    Article  PubMed  Google Scholar 

  35. Kaufman ES, Israel CW, Nair GM, Armaganijan L, Divakaramenon S, Mairesse GH, et al. Positive predictive value of device-detected atrial high-rate episodes at different rates and durations: an analysis from ASSERT. Heart Rhythm. 2012;9(8):1241–6. doi:10.1016/j.hrthm.2012.03.017.

    Article  PubMed  Google Scholar 

  36. Fuchs T, Torjman A. Atrial tachycardia in patients with cryptogenic stroke: is there a need for anticoagulation? Isr Med Assoc J. 2015;17(11):669–72.

    PubMed  Google Scholar 

  37. Glotzer TV, Hellkamp AS, Zimmerman J, Sweeney MO, Yee R, Marinchak R, et al. Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the atrial diagnostics ancillary study of the MOde Selection Trial (MOST). Circulation. 2003;107(12):1614–9. doi:10.1161/01.CIR.0000057981.70380.45.

    Article  PubMed  Google Scholar 

  38. Capucci A, Santini M, Padeletti L, Gulizia M, Botto G, Boriani G, et al. Monitored atrial fibrillation duration predicts arterial embolic events in patients suffering from bradycardia and atrial fibrillation implanted with antitachycardia pacemakers. J Am Coll Cardiol. 2005;46(10):1913–20. doi:10.1016/j.jacc.2005.07.044.

    Article  PubMed  Google Scholar 

  39. Glotzer TV, Daoud EG, Wyse DG, Singer DE, Ezekowitz MD, Hilker C, et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ Arrhythm Electrophysiol. 2009;2(5):474–80. doi:10.1161/CIRCEP.109.849638.

    Article  PubMed  Google Scholar 

  40. Shanmugam N, Boerdlein A, Proff J, Ong P, Valencia O, Maier SK, et al. Detection of atrial high-rate events by continuous home monitoring: clinical significance in the heart failure-cardiac resynchronization therapy population. Europace. 2012;14(2):230–7. doi:10.1093/europace/eur293.

    Article  PubMed  Google Scholar 

  41. Boriani G, Glotzer TV, Santini M, West TM, De Melis M, Sepsi M, et al. Device-detected atrial fibrillation and risk for stroke: an analysis of >10,000 patients from the SOS AF project (Stroke preventiOn Strategies based on Atrial Fibrillation information from implanted devices). Eur Heart J. 2014;35(8):508–16. doi:10.1093/eurheartj/eht491.

    Article  PubMed  Google Scholar 

  42. • Van Gelder IC, Healey JS, Crijns HJ, Wang J, Hohnloser SH, Gold MR, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J. 2017; doi:10.1093/eurheartj/ehx042. A recent follow-up of the ASSERT study that showed AHREs > 24h, but not AHREs between 6 min and 24h, to be associated with an increased risk ischemic stroke or thromboembolism.

  43. Botto GL, Padeletti L, Santini M, Capucci A, Gulizia M, Zolezzi F, et al. Presence and duration of atrial fibrillation detected by continuous monitoring: crucial implications for the risk of thromboembolic events. J Cardiovasc Electrophysiol. 2009;20(3):241–8. doi:10.1111/j.1540-8167.2008.01320.x.

    Article  PubMed  Google Scholar 

  44. Daoud EG, Glotzer TV, Wyse DG, Ezekowitz MD, Hilker C, Koehler J, et al. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm. 2011;8(9):1416–23. doi:10.1016/j.hrthm.2011.04.022.

    Article  PubMed  Google Scholar 

  45. Brambatti M, Connolly SJ, Gold MR, Morillo CA, Capucci A, Muto C, et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation. 2014;129(21):2094–9. doi:10.1161/CIRCULATIONAHA.113.007825.

    Article  PubMed  Google Scholar 

  46. • Turakhia MP, Ziegler PD, Schmitt SK, Chang Y, Fan J, Than CT, et al. Atrial fibrillation burden and short-term risk of stroke: case-crossover analysis of continuously recorded heart rhythm from cardiac electronic implanted devices. Circ Arrhythm Electrophysiol. 2015;8(5):1040–7. doi:10.1161/CIRCEP.114.003057. This case-crossover analysis demonstrated an increased risk of ischemic stroke during the 30 day period following AHRE in a large cohort of patients.

    Article  PubMed  Google Scholar 

  47. Larsen JA, McPherson DD, Kadish AH, Goldberger JJ. Course of intraatrial thrombi resolution using transesophageal echocardiography. Echocardiography. 2003;20(2):121–8.

    Article  PubMed  Google Scholar 

  48. Inoue H, Nozawa T, Okumura K, Jong-Dae L, Shimizu A, Yano K. Prothrombotic activity is increased in patients with nonvalvular atrial fibrillation and risk factors for embolism. Chest. 2004;126(3):687–92. doi:10.1378/chest.126.3.687.

    Article  PubMed  Google Scholar 

  49. Lim HS, Willoughby SR, Schultz C, Gan C, Alasady M, Lau DH, et al. Effect of atrial fibrillation on atrial thrombogenesis in humans: impact of rate and rhythm. J Am Coll Cardiol. 2013;61(8):852–60. doi:10.1016/j.jacc.2012.11.046.

    Article  PubMed  Google Scholar 

  50. Watson T, Shantsila E, Lip GY. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet. 2009;373(9658):155–66. doi:10.1016/S0140-6736(09)60040-4.

    Article  CAS  PubMed  Google Scholar 

  51. Goldberger JJ, Arora R, Green D, Greenland P, Lee DC, Lloyd-Jones DM, et al. Evaluating the atrial myopathy underlying atrial fibrillation: identifying the arrhythmogenic and thrombogenic substrate. Circulation. 2015;132(4):278–91. doi:10.1161/CIRCULATIONAHA.115.016795.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lazarus A. Remote, wireless, ambulatory monitoring of implantable pacemakers, cardioverter defibrillators, and cardiac resynchronization therapy systems: analysis of a worldwide database. Pacing Clin Electrophysiol. 2007;30(Suppl 1):2–12. doi:10.1111/j.1540-8159.2007.00595.x.

    Google Scholar 

  53. Ricci RP, Morichelli L, Santini M. Remote control of implanted devices through home monitoring technology improves detection and clinical management of atrial fibrillation. Europace. 2009;11(1):54–61. doi:10.1093/europace/eun303.

    Article  PubMed  Google Scholar 

  54. Varma N, Epstein AE, Irimpen A, Schweikert R, Love C, Investigators T. Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up: the Lumos-T Safely Reduces Routine Office Device Follow-up (TRUST) trial. Circulation. 2010;122(4):325–32. doi:10.1161/CIRCULATIONAHA.110.937409.

    Article  PubMed  Google Scholar 

  55. Crossley GH, Boyle A, Vitense H, Chang Y, Mead RH, Investigators C. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts. J Am Coll Cardiol. 2011;57(10):1181–9. doi:10.1016/j.jacc.2010.12.012.

    Article  PubMed  Google Scholar 

  56. Martin DT, Bersohn MM, Waldo AL, Wathen MS, Choucair WK, Lip GY, et al. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. Eur Heart J. 2015;36(26):1660–8. doi:10.1093/eurheartj/ehv115.

    Article  PubMed  Google Scholar 

  57. Tomson TT, Passman R. Current and emerging uses of insertable cardiac monitors: evaluation of syncope and monitoring for atrial fibrillation. Cardiol Rev. 2017;25(1):22–9. doi:10.1097/CRD.0000000000000129.

    Article  PubMed  Google Scholar 

  58. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86. doi:10.1056/NEJMoa1313600.

    Article  CAS  PubMed  Google Scholar 

  59. Brachmann J, Morillo CA, Sanna T, Di Lazzaro V, Diener HC, Bernstein RA, et al. Uncovering atrial fibrillation beyond short-term monitoring in cryptogenic stroke patients: three-year results from the cryptogenic stroke and underlying atrial fibrillation trial. Circ Arrhythm Electrophysiol. 2016;9(1):e003333. doi:10.1161/CIRCEP.115.003333.

    Article  PubMed  Google Scholar 

  60. Reiffel JA, Verma A, Kowey PR. High incidence of previously unknown (“silent”) atrial fibrillation in patients at high risk for atrial fibrillation and stroke: primary results from the REVEAL AF study. Chicago: Heart Rhythm Society Annual Scientific Sessions; 2017.

    Google Scholar 

  61. Diederichsen SZ, Haugan KJ, Kober L, Hojberg S, Brandes A, Kronborg C, et al. Atrial fibrillation detected by continuous electrocardiographic monitoring using implantable loop recorder to prevent stroke in individuals at risk (the LOOP study): Rationale and design of a large randomized controlled trial. Am Heart J. 2017;187:122–32. doi:10.1016/j.ahj.2017.02.017.

    Article  PubMed  Google Scholar 

  62. Sjalander S, Holmqvist F, Smith JG, Platonov PG, Kesek M, Svensson PJ, et al. Assessment of use vs discontinuation of oral anticoagulation after pulmonary vein isolation in patients with atrial fibrillation. JAMA Cardiol. 2017;2(2):146–52. doi:10.1001/jamacardio.2016.4179.

    Article  PubMed  Google Scholar 

  63. Themistoclakis S, Corrado A, Marchlinski FE, Jais P, Zado E, Rossillo A, et al. The risk of thromboembolism and need for oral anticoagulation after successful atrial fibrillation ablation. J Am Coll Cardiol. 2010;55(8):735–43. doi:10.1016/j.jacc.2009.11.039.

    Article  PubMed  Google Scholar 

  64. Mascarenhas DA, Farooq MU, Ziegler PD, Kantharia BK. Role of insertable cardiac monitors in anticoagulation therapy in patients with atrial fibrillation at high risk of bleeding. Europace. 2016;18(6):799–806. doi:10.1093/europace/euv350.

    Article  PubMed  Google Scholar 

  65. Zuern CS, Kilias A, Berlitz P, Seizer P, Gramlich M, Muller K, et al. Anticoagulation after catheter ablation of atrial fibrillation guided by implantable cardiac monitors. Pacing Clin Electrophysiol. 2015;38(6):688–93. doi:10.1111/pace.12625.

    Article  PubMed  Google Scholar 

  66. Passman R, Leong-Sit P, Andrei AC, Huskin A, Tomson TT, Bernstein R, et al. Targeted anticoagulation for atrial fibrillation guided by continuous rhythm assessment with an insertable cardiac monitor: the Rhythm Evaluation for Anticoagulation With Continuous Monitoring (REACT.COM) pilot study. J Cardiovasc Electrophysiol. 2016;27(3):264–70. doi:10.1111/jce.12864.

    Article  PubMed  Google Scholar 

  67. Steinhaus DA, Zimetbaum PJ, Passman RS, Leong-Sit P, Reynolds MR. Cost effectiveness of implantable cardiac monitor-guided intermittent anticoagulation for atrial fibrillation: an analysis of the REACT.COM pilot study. J Cardiovasc Electrophysiol. 2016; doi:10.1111/jce.13090.

  68. Waks J, Passman R, Thosani A, Mela T, Pederson D, Glotzer T et al. Intermittent anticoagulation guided by continuous atrial fibrillation burden monitoring using dual chamber pacemakers and implantable cardioverter-defibrillators—results from the Tailored Anticoagulation For Non-Continuous Atrial Fibrillation (Tactic-Af) pilot study. Heart Rhythm Society Annual Scientific Sessions. Chicago; 2017.

  69. Ohara K, Inoue H, Nozawa T, Hirai T, Iwasa A, Okumura K, et al. Accumulation of risk factors enhances the prothrombotic state in atrial fibrillation. Int J Cardiol. 2008;126(3):316–21. doi:10.1016/j.ijcard.2007.06.020.

    Article  PubMed  Google Scholar 

  70. Lip GY, Lane D, Van Walraven C, Hart RG. Additive role of plasma von Willebrand factor levels to clinical factors for risk stratification of patients with atrial fibrillation. Stroke. 2006;37(9):2294–300. doi:10.1161/01.STR.0000236840.00467.84.

    Article  CAS  PubMed  Google Scholar 

  71. Hijazi Z, Oldgren J, Siegbahn A, Granger CB, Wallentin L. Biomarkers in atrial fibrillation: a clinical review. Eur Heart J. 2013;34(20):1475–80. doi:10.1093/eurheartj/eht024.

    Article  CAS  PubMed  Google Scholar 

  72. Kaplan R, Ziegler P, Koehler J, Glotzer T, Passman R. Atrial fibrillation variability on long-term monitoring of implantable cardiac rhythm management devices. Chicago: Heart Rhythm Society Annual Scientific Sessions; 2017.

    Google Scholar 

  73. Charitos EI, Purerfellner H, Glotzer TV, Ziegler PD. Clinical classifications of atrial fibrillation poorly reflect its temporal persistence: insights from 1,195 patients continuously monitored with implantable devices. J Am Coll Cardiol. 2014;63(25 Pt A):2840–8. doi:10.1016/j.jacc.2014.04.019.

    Article  PubMed  Google Scholar 

  74. Charitos EI, Stierle U, Ziegler PD, Baldewig M, Robinson DR, Sievers HH, et al. A comprehensive evaluation of rhythm monitoring strategies for the detection of atrial fibrillation recurrence: insights from 647 continuously monitored patients and implications for monitoring after therapeutic interventions. Circulation. 2012;126(7):806–14. doi:10.1161/CIRCULATIONAHA.112.098079.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod S. Passman.

Ethics declarations

Conflict of Interest

J. Wasserlauf has no relevant disclosures. R. Passman received research support, consulting fees, and speaking fees from Medtronic, and received consulting fees and speaking fees from Biotronik.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Arrhythmias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasserlauf, J., Passman, R.S. Can Implantable Cardiac Devices Be Used to Lower Risk of Stroke?. Curr Cardiovasc Risk Rep 11, 30 (2017). https://doi.org/10.1007/s12170-017-0554-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-017-0554-5

Keywords

Navigation