E-Cigarettes and Cardiovascular Disease Risk: Evaluation of Evidence, Policy Implications, and Recommendations

Cardiovascular Risk Health Policy (W. Rosamond, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cardiovascular Risk Health Policy

Abstract

Cardiovascular disease is the major cause of death in smokers. Although new tobacco products such as e-cigarettes do not generate many of the harmful or potentially harmful constituents (HPHCs), present in combustible tobacco products the cardiovascular effects of these devices are unknown and their efficacy in promoting and sustaining cessation remains unclear. Currently, these devices are being marketed as cleaner and safer alternative to smoking that could help smokers quit smoking. Nevertheless, e-cigarette aerosols contain appreciable levels of carbonyls, which within the concentration range reported in e-cigarettes, exert significant cardiovascular toxicity. Moreover, even by itself, nicotine is a sympathomimetic drug that elicits hemodynamic and metabolic changes that could increase the risk of acute cardiovascular events such as arrhythmias or plaque rupture and chronically increase cardiovascular disease risk by inducing dyslipidemia. The dose-response relationship between smoking and cardiovascular mortality is non-linear, suggesting that reduction in HPHC concentrations in e-cigarette aerosols may not result in proportional harm reduction and decreased HPHC exposure may be offset by increased use by individuals who believe that e-cigarettes are safer than conventional cigarettes. Thus, taken together, current evidence does not entirely support the notion that e-cigarettes are reduced harm products or effective smoking cessation devices.

Keywords

Smoking Acrolein Particulate matter Formaldehyde Acetaldehyde Blood pressure Atherosclerosis 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A, Kurek J, et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control. 2014;23:133–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Grana RA, Ling PM. “Smoking revolution”: a content analysis of electronic cigarette retail websites. Am J Prev Med. 2014;46:395–403.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Doll R, Hill AB. Smoking and carcinoma of the lung; preliminary report. Br Med J. 1950;2:739–48.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Doll R, Hill AB. The mortality of doctors in relation to their smoking habits; a preliminary report. Br Med J. 1954;1:1451–5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Centers for Disease C and Prevention. Current cigarette smoking prevalence among working adults--United States, 2004-2010. MMWR Morb Mortal Wkly Rep. 2011;60:1305–9.Google Scholar
  6. 6.
    Stewart ST, Cutler DM, Rosen AB. Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med. 2009;361:2252–60.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    The health consequences of smoking: a report of the surgeon general, Atlanta; 2004.Google Scholar
  8. 8.
    Ezzati M, Lopez AD. Estimates of global mortality attributable to smoking in 2000. Lancet. 2003;362:847–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Piano MR, Benowitz NL, Fitzgerald GA. Corbridge S, Heath J, Hahn E, Pechacek TF, Howard G and American Heart Association Council on Cardiovascular N. Impact of smokeless tobacco products on cardiovascular disease: implications for policy, prevention, and treatment: a policy statement from the American Heart Association. Circulation. 2010;122:1520–44.CrossRefPubMedGoogle Scholar
  10. 10.
    Luoto R, Uutela A, Puska P. Occasional smoking increases total and cardiovascular mortality among men. Nicotine Tob Res. 2000;2:133–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209.CrossRefPubMedGoogle Scholar
  12. 12.
    Bjartveit K, Tverdal A. Health consequences of smoking 1–4 cigarettes per day. Tob Control. 2005;14:315–20.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bhatnagar A. Cardiovascular pathophysiology of environmental pollutants. Am J Physiol Heart Circ Physiol. 2004;286:H479–85.CrossRefPubMedGoogle Scholar
  14. 14.
    Bhatnagar A. Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ Res. 2006;99:692–705.CrossRefPubMedGoogle Scholar
  15. 15.••
    Pope 3rd CA, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, et al. Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation. 2009;120:941–8. The study report a non-linear dose response relationship between smoking and cardiovacular mortality.CrossRefPubMedGoogle Scholar
  16. 16.
    Pope 3rd CA, Eatough DJ, Gold DR, Pang Y, Nielsen KR, Nath P, et al. Acute exposure to environmental tobacco smoke and heart rate variability. Environ Health Perspect. 2001;109:711–6.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schane RE, Ling PM, Glantz SA. Health effects of light and intermittent smoking: a review. Circulation. 2010;121:1518–22.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McNeill A, Brose LS, Calder R, Hitchman SC, Hajek P, McRobbie H. E-cigarettes: the need for clear communication on relative risks. Lancet. 2015;386:1237.CrossRefPubMedGoogle Scholar
  19. 19.
    O’Connor R, Fenton K. E-cigarettes: spelling out the available evidence for the public. Lancet. 2015;386:1237.CrossRefPubMedGoogle Scholar
  20. 20.
    Farsalinos KE, Le Houezec J. Regulation in the face of uncertainty: the evidence on electronic nicotine delivery systems (e-cigarettes). Risk Manag Healthc Policy. 2015;8:157–67.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M, Kurek J, et al. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob Res. 2014;16:1319–26.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hutzler C, Paschke M, Kruschinski S, Henkler F, Hahn J, Luch A. Chemical hazards present in liquids and vapors of electronic cigarettes. Arch Toxicol. 2014;88:1295–308.CrossRefPubMedGoogle Scholar
  23. 23.
    Schweitzer KS, Chen SX, Law S, Van Demark M, Poirier C, Justice MJ, et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol. 2015;309:L175–87.CrossRefPubMedGoogle Scholar
  24. 24.
    Yu G, Chen Q, Liu X, Guo C, Du H, Sun Z. Formaldehyde induces bone marrow toxicity in mice by inhibiting peroxiredoxin 2 expression. Mol Med Rep. 2014;10:1915–20.PubMedGoogle Scholar
  25. 25.
    Gulec M, Songur A, Sahin S, Ozen OA, Sarsilmaz M, Akyol O. Antioxidant enzyme activities and lipid peroxidation products in heart tissue of subacute and subchronic formaldehyde-exposed rats: a preliminary study. Toxicol Ind Health. 2006;22:117–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Tani T, Kogi K, Horiguchi Y. Inhibitory effects of formaldehyde inhalation on the cardiovascular and respiratory systems in unanesthetized rabbits. Jpn J Pharmacol. 1986;40:551–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Sandikci M, Seyrek K, Aksit H, Kose H. Inhalation of formaldehyde and xylene induces apoptotic cell death in the lung tissue. Toxicol Ind Health. 2009;25:455–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang Y, Liu X, McHale C, Li R, Zhang L, Wu Y, et al. Bone marrow injury induced via oxidative stress in mice by inhalation exposure to formaldehyde. PLoS One. 2013;8, e74974.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lu Z, Li CM, Qiao Y, Yan Y, Yang X. Effect of inhaled formaldehyde on learning and memory of mice. Indoor Air. 2008;18:77–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Rager JE, Moeller BC, Miller SK, Kracko D, Doyle-Eisele M, Swenberg JA, et al. Formaldehyde-associated changes in microRNAs: tissue and temporal specificity in the rat nose, white blood cells, and bone marrow. Toxicol Sci. 2014;138:36–46.CrossRefPubMedGoogle Scholar
  31. 31.
    Sim VM, Pattle RE. Effect of possible smog irritants on human subjects. J Am Med Assoc. 1957;165:1908–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Schuck EA, Stephens ER, Middleton JT. Eye irritation response at low concentrations of irritants. Arch Environ Health. 1966;13:570–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Kerfoot EJ, Mooney TF. Formaldehyde and paraformaldehyde study in funeral homes. Am Ind Hyg Assoc J. 1975;36:533–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Matsuoka T, Takaki A, Ohtaki H, Shioda S. Early changes to oxidative stress levels following exposure to formaldehyde in ICR mice. J Toxicol Sci. 2010;35:721–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Arts JH, Muijser H, Kuper CF, Woutersen RA. Setting an indoor air exposure limit for formaldehyde: factors of concern. Regul Toxicol Pharmacol. 2008;52:189–94.CrossRefPubMedGoogle Scholar
  36. 36.
    Destaillats H, Spaulding RS, Charles MJ. Ambient air measurement of acrolein and other carbonyls at the Oakland-San Francisco Bay Bridge toll plaza. Environ Sci Technol. 2002;36:2227–35.CrossRefPubMedGoogle Scholar
  37. 37.
    McGwin G, Lienert J, Kennedy JI. Formaldehyde exposure and asthma in children: a systematic review. Environ Health Perspect. 2010;118:313–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Sakula A. Formalin asthma in hospital laboratory staff. Lancet. 1975;2:816.CrossRefPubMedGoogle Scholar
  39. 39.
    Hendrick DJ, Lane DJ. Formalin asthma in hospital staff. Br Med J. 1975;1:607–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tani T, Satoh S, Horiguchi Y. The vasodilator action of formaldehyde in dogs. Toxicol Appl Pharmacol. 1978;43:493–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Tani T, Horiguchi Y. Effects of formaldehyde on cardiac function. Jpn J Pharmacol. 1990;52:563–72.CrossRefPubMedGoogle Scholar
  42. 42.
    Takeshita D, Nakajima-Takenaka C, Shimizu J, Hattori H, Nakashima T, Kikuta A, et al. Effects of formaldehyde on cardiovascular system in in situ rat hearts. Basic Clin Pharmacol Toxicol. 2009;105:271–80.CrossRefPubMedGoogle Scholar
  43. 43.
    Nunn AJ, Craigen AA, Darbyshire JH, Venables KM, Newman Taylor AJ. Six year follow up of lung function in men occupationally exposed to formaldehyde. Br J Ind Med. 1990;47:747–52.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Stanek J, Symanowicz PT, Olsen JE, Gianutsos G, Morris JB. Sensory-nerve-mediated nasal vasodilatory response to inspired acetaldehyde and acetic acid vapors. Inhal Toxicol. 2001;13:807–22.CrossRefPubMedGoogle Scholar
  45. 45.
    Egle Jr JL. Effects of inhaled acetaldehyde and propionaldehyde on blood pressure and heart rate. Toxicol Appl Pharmacol. 1972;23:131–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Wingard C, Hitchcock P, Teague RS. A survey of aldehydes with respect to their action on the blood pressure. Arch Int Pharmacodyn Ther. 1955;102:65–84.PubMedGoogle Scholar
  47. 47.
    James TN, Bear ES. Cardiac effects of some simple aliphatic aldehydes. J Pharmacol Exp Ther. 1968;163:300–8.PubMedGoogle Scholar
  48. 48.
    Myou S, Fujimura M, Nishi K, Ohka T, Matsuda T. Aerosolized acetaldehyde induces histamine-mediated bronchoconstriction in asthmatics. Am Rev Respir Dis. 1993;148:940–3.CrossRefPubMedGoogle Scholar
  49. 49.
    Morris JB. Dosimetry, toxicity and carcinogenicity of inspired acetaldehyde in the rat. Mutat Res. 1997;380:113–24.CrossRefPubMedGoogle Scholar
  50. 50.
    Oyama T, Isse T, Ogawa M, Muto M, Uchiyama I, Kawamoto T. Susceptibility to inhalation toxicity of acetaldehyde in Aldh2 knockout mice. Front Biosci. 2007;12:1927–34.CrossRefPubMedGoogle Scholar
  51. 51.
    Appelman LM, Woutersen RA, Feron VJ. Inhalation toxicity of acetaldehyde in rats. I. Acute and subacute studies. Toxicology. 1982;23:293–307.CrossRefPubMedGoogle Scholar
  52. 52.
    Perez CM, Hazari MS, Ledbetter AD, Haykal-Coates N, Carll AP, Cascio WE, et al. Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhal Toxicol. 2015;27:54–63.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Conklin DJ, Barski OA, Lesgards JF, Juvan P, Rezen T, Rozman D, et al. Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicol Appl Pharmacol. 2010;243:1–12.CrossRefPubMedGoogle Scholar
  54. 54.
    Conklin DJ, Bhatnagar A, Cowley HR, Johnson GH, Wiechmann RJ, Sayre LM, et al. Acrolein generation stimulates hypercontraction in isolated human blood vessels. Toxicol Appl Pharmacol. 2006;217:277–88.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Awe SO, Adeagbo AS, D’Souza SE, Bhatnagar A, Conklin DJ. Acrolein induces vasodilatation of rodent mesenteric bed via an EDHF-dependent mechanism. Toxicol Appl Pharmacol. 2006;217:266–76.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tsakadze NL, Srivastava S, Awe SO, Adeagbo AS, Bhatnagar A, D’Souza SE. Acrolein-induced vasomotor responses of rat aorta. Am J Physiol Heart Circ Physiol. 2003;285:H727–34.CrossRefPubMedGoogle Scholar
  57. 57.
    Conklin DJ, Haberzettl P, Prough RA, Bhatnagar A. Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke. Am J Physiol Heart Circ Physiol. 2009;296:H1586–97.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sithu SD, Srivastava S, Siddiqui MA, Vladykovskaya E, Riggs DW, Conklin DJ, et al. Exposure to acrolein by inhalation causes platelet activation. Toxicol Appl Pharmacol. 2010;248:100–10.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Srivastava S, Sithu SD, Vladykovskaya E, Haberzettl P, Hoetker DJ, Siddiqui MA, et al. Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis. 2011;215:301–8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    O’Toole TE, Zheng YT, Hellmann J, Conklin DJ, Barski O, Bhatnagar A. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicol Appl Pharmacol. 2009;236:194–201.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang GW, Guo Y, Vondriska TM, Zhang J, Zhang S, Tsai LL, et al. Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCepsilon signaling and cardioprotection. J Mol Cell Cardiol. 2008;44:1016–22.CrossRefPubMedGoogle Scholar
  62. 62.
    Ismahil MA, Hamid T, Haberzettl P, Gu Y, Chandrasekar B, Srivastava S, et al. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2011;301:H2050–60.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    DeJarnett N, Conklin DJ, Riggs DW, Myers JA, O’Toole TE, Hamzeh I, et al. Acrolein exposure is associated with increased cardiovascular disease risk. J Am Heart Assoc. 2014;3.Google Scholar
  64. 64.•
    Andre E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, et al. Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest. 2008;118:2574–82. This study reports that acrolein mediates the neurogenic effects of cigarette smoke by stimulating TRPA1 receptors.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Haussmann HJ. Use of hazard indices for a theoretical evaluation of cigarette smoke composition. Chem Res Toxicol. 2012;25:794–810.CrossRefPubMedGoogle Scholar
  66. 66.
    Spiess PC, Kasahara D, Habibovic A, Hristova M, Randall MJ, Poynter ME, et al. Acrolein exposure suppresses antigen-induced pulmonary inflammation. Respir Res. 2013;14:107.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Borchers MT, Wesselkamper SC, Deshmukh H, Beckman E, Medvedovic M, Sartor M, Leikauf GD and Committee HEIHR. The role of T cells in the regulation of acrolein-induced pulmonary inflammation and epithelial-cell pathology. Res Rep Health Eff Inst. 2009:5–29.Google Scholar
  68. 68.
    Wheat LA, Haberzettl P, Hellmann J, Baba SP, Bertke M, Lee J, et al. Acrolein inhalation prevents vascular endothelial growth factor-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arterioscler Thromb Vasc Biol. 2011;31:1598–606.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Roemer E, Anton HJ, Kindt R. Cell proliferation in the respiratory tract of the rat after acute inhalation of formaldehyde or acrolein. J Appl Toxicol. 1993;13:103–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Lyon JP, Jenkins Jr LJ, Jones RA, Coon RA, Siegel J. Repeated and continuous exposure of laboratory animals to acrolein. Toxicol Appl Pharmacol. 1970;17:726–32.CrossRefPubMedGoogle Scholar
  71. 71.
    Schroeter JD, Kimbell JS, Gross EA, Willson GA, Dorman DC, Tan YM, et al. Application of physiological computational fluid dynamics models to predict interspecies nasal dosimetry of inhaled acrolein. Inhal Toxicol. 2008;20:227–43.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang Y, Sumner W, Chen DR. In vitro particle size distributions in electronic and conventional cigarette aerosols suggest comparable deposition patterns. Nicotine Tob Res. 2013;15:501–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Czogala J, Goniewicz ML, Fidelus B, Zielinska-Danch W, Travers MJ, Sobczak A. Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob Res. 2014;16:655–62.CrossRefPubMedGoogle Scholar
  74. 74.
    Pellegrino RM, Tinghino B, Mangiaracina G, Marani A, Vitali M, Protano C, et al. Electronic cigarettes: an evaluation of exposure to chemicals and fine particulate matter (PM). Ann Ig. 2012;24:279–88.PubMedGoogle Scholar
  75. 75.••
    Brook RD, Rajagopalan S, Pope 3rd CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121:2331–78. The statement discusses current evidence linking exposure to particulate matter to cardiovascular disease.CrossRefPubMedGoogle Scholar
  76. 76.
    Kmietowicz Z. Market for e-cigarettes includes 466 brands and 7764 unique flavours. BMJ. 2014;348:g4016.CrossRefPubMedGoogle Scholar
  77. 77.
    Villanti AC, Richardson A, Vallone DM, Rath JM. Flavored tobacco product use among U.S. young adults. Am J Prev Med. 2013;44:388–91.CrossRefPubMedGoogle Scholar
  78. 78.
    Kaleta D, Usidame B, Szosland-Faltyn A, Makowiec-Dabrowska T. Use of flavoured cigarettes in Poland: data from the global adult tobacco survey (2009-2010). BMC Public Health. 2014;14:127.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gardiner P, Clark PI. Menthol cigarettes: moving toward a broader definition of harm. Nicotine Tob Res. 2010;12 Suppl 2:S85–93.CrossRefPubMedGoogle Scholar
  80. 80.
    Delnevo CD, Gundersen DA, Hrywna M, Echeverria SE, Steinberg MB. Smoking-cessation prevalence among U.S. smokers of menthol versus non-menthol cigarettes. Am J Prev Med. 2011;41:357–65.CrossRefPubMedGoogle Scholar
  81. 81.
    Nonnemaker J, Hersey J, Homsi G, Busey A, Allen J, Vallone D. Initiation with menthol cigarettes and youth smoking uptake. Addiction. 2013;108:171–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Farsalinos KE, Kistler KA, Gillman G, Voudris V. Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine Tob Res. 2015;17:168–74.CrossRefPubMedGoogle Scholar
  83. 83.
    Tierney PA, Karpinski CD, Brown JE, Luo W, Pankow JF. Flavour chemicals in electronic cigarette fluids. Tob Control. 2015.Google Scholar
  84. 84.
    Grassi G, Seravalle G, Calhoun DA, Bolla GB, Giannattasio C, Marabini M, et al. Mechanisms responsible for sympathetic activation by cigarette smoking in humans. Circulation. 1994;90:248–53.CrossRefPubMedGoogle Scholar
  85. 85.
    Hanna ST. Nicotine effect on cardiovascular system and ion channels. J Cardiovasc Pharmacol. 2006;47:348–58.PubMedGoogle Scholar
  86. 86.••
    Benowitz NL, Gourlay SG. Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J Am Coll Cardiol. 1997;29:1422–31. The review discusses the cardiovascular effects of nicotine.CrossRefPubMedGoogle Scholar
  87. 87.
    Kaijser L, Berglund B. Effect of nicotine on coronary blood-flow in man. Clin Physiol. 1985;5:541–52.CrossRefPubMedGoogle Scholar
  88. 88.
    Sjoberg N, Saint DA. A single 4 mg dose of nicotine decreases heart rate variability in healthy nonsmokers: implications for smoking cessation programs. Nicotine Tob Res. 2011;13:369–72.CrossRefPubMedGoogle Scholar
  89. 89.
    Stein PK, Rottman JN, Kleiger RE. Effect of 21 mg transdermal nicotine patches and smoking cessation on heart rate variability. Am J Cardiol. 1996;77:701–5.CrossRefPubMedGoogle Scholar
  90. 90.
    Harte CB. Nicotine acutely inhibits erectile tumescence by altering heart rate variability. Urology. 2014;83:1093–8.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Adamopoulos D, Argacha JF, Gujic M, Preumont N, Degaute JP, van de Borne P. Acute effects of nicotine on arterial stiffness and wave reflection in healthy young non-smokers. Clin Exp Pharmacol Physiol. 2009;36:784–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Neunteufl T, Heher S, Kostner K, Mitulovic G, Lehr S, Khoschsorur G, et al. Contribution of nicotine to acute endothelial dysfunction in long-term smokers. J Am Coll Cardiol. 2002;39:251–6.CrossRefPubMedGoogle Scholar
  93. 93.
    Cluette-Brown J, Mulligan J, Doyle K, Hagan S, Osmolski T, Hojnacki J. Oral nicotine induces an atherogenic lipoprotein profile. Proc Soc Exp Biol Med. 1986;182:409–13.CrossRefPubMedGoogle Scholar
  94. 94.
    Beere PA, Glagov S, Zarins CK. Retarding effect of lowered heart rate on coronary atherosclerosis. Science. 1984;226:180–2.CrossRefPubMedGoogle Scholar
  95. 95.•
    Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7:833–9. This is the first report clearly showing the pro-angiogenic effects of nicotine.CrossRefPubMedGoogle Scholar
  96. 96.•
    Lau PP, Li L, Merched AJ, Zhang AL, Ko KW, Chan L. Nicotine induces proinflammatory responses in macrophages and the aorta leading to acceleration of atherosclerosis in low-density lipoprotein receptor(−/−) mice. Arterioscler Thromb Vasc Biol. 2006;26:143–9. This study shows that exposure to nicotine increase atherosclerotic lesion formation.CrossRefPubMedGoogle Scholar
  97. 97.
    Vansickel AR, Weaver MF, Eissenberg T. Clinical laboratory assessment of the abuse liability of an electronic cigarette. Addiction. 2012;107:1493–500.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    D’Ruiz CD, Graff DW, Yan XS. Nicotine delivery, tolerability and reduction of smoking urge in smokers following short-term use of one brand of electronic cigarettes. BMC Public Health. 2015;15:991.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Farsalinos KE, Tsiapras D, Kyrzopoulos S, Savvopoulou M, Voudris V. Acute effects of using an electronic nicotine-delivery device (electronic cigarette) on myocardial function: comparison with the effects of regular cigarettes. BMC Cardiovasc Disord. 2014;14:78.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.American Heart Association Tobacco Regulation and Addiction Center, Division of Cardiovacular Medicine, Department of MedicineUniversity of LouisvilleLouisvilleUSA

Personalised recommendations