Primary Prevention of Atherosclerotic Cardiovascular Disease in Women

  • Rebeccah A. McKibben
  • Mahmoud Al Rifai
  • Lena M. Mathews
  • Erin D. MichosEmail author
Women + Heart Disease (E Jackson, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Women and Heart Disease


Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality among women. Despite improvements in cardiovascular disease prevention efforts, there remain gaps in cardiovascular disease awareness among women, as well as age and racial disparities in ASCVD outcomes for women. Disparity also exists in the impact the traditional risk factors confer on ASCVD risk between women and men, with smoking and diabetes both resulting in stronger relative risks in women compared to men. Additionally there are risk factors that are unique to women (such as pregnancy-related factors) or that disproportionately affect women (such as auto-immune disease) where preventive efforts should be targeted. Risk assessment and management must also be sex-specific to effectively reduce cardiovascular disease and improve outcomes among women. Evidence supports the use of statin therapy for primary prevention in women at higher ASCVD risk. However, some pause should be given before prescribing aspirin therapy in women without known ASCVD, with most evidence supporting the use of aspirin for women ≥65 years not at increased risk for bleeding. This review article will summarize (1) traditional and non-traditional assessments of ASCVD risk and (2) lifestyle and pharmacologic therapies for the primary prevention of ASCVD in women.


Cardiovascular disease Women Prevention Risk 



The authors would like to thank Dr. Roger S. Blumenthal, Director of Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, for his review of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Rebeccah McKibben, Lena Mathews, Mahmoud Al Rifai, and Erin Michos have no relevant disclosures to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding Source



Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med. 2007;356(23):2388–98. doi: 10.1056/NEJMsa053935.CrossRefPubMedGoogle Scholar
  2. 2.
    Towfighi A, Zheng L, Ovbiagele B. Sex-specific trends in midlife coronary heart disease risk and prevalence. Arch Intern Med. 2009;169(19):1762–6. doi: 10.1001/archinternmed.2009.318.CrossRefPubMedGoogle Scholar
  3. 3.
    Wenger NK. Transforming cardiovascular disease prevention in women: time for the Pygmalion construct to end. Cardiology. 2015;130(1):62–8. doi: 10.1159/000370018.CrossRefPubMedGoogle Scholar
  4. 4.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410. doi: 10.1161/01.cir.0000442015.53336.12.
  5. 5.•
    Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. Circulation. 2011;123(11):1243–62. doi: 10.1161/CIR.0b013e31820faaf8. In 2004, the AHA, in collaboration with numerous other organizations, first undertook a systemic and critical review of the literature regarding the primary prevention of ASCVD specifically among women and published female-specific clinical recommendations. These guidelines were updated in 2007 and again in 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Gholizadeh L, Davidson P. More similarities than differences: an international comparison of CVD mortality and risk factors in women. Health care Women Int. 2008;29(1):3–22. doi: 10.1080/07399330701723756.CrossRefPubMedGoogle Scholar
  7. 7.
    Wilmot KA, O'Flaherty M, Capewell S, Ford ES, Vaccarino V. Coronary heart disease mortality declines in the United States from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation. 2015;132(11):997–1002.Google Scholar
  8. 8.
    Mosca L, Mochari-Greenberger H, Dolor RJ, Newby LK, Robb KJ. Twelve-year follow-up of American women’s awareness of cardiovascular disease risk and barriers to heart health. Circ Cardiovasc Qual Outcomes. 2010;3(2):120–7. doi: 10.1161/CIRCOUTCOMES.109.915538.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Kleindorfer D, Khoury J, Broderick JP, Rademacher E, Woo D, Flaherty ML, et al. Temporal trends in public awareness of stroke: warning signs, risk factors, and treatment. Stroke J Cereb Circ. 2009;40(7):2502–6. doi: 10.1161/STROKEAHA.109.551861.CrossRefGoogle Scholar
  10. 10.
    Ferris A, Robertson RM, Fabunmi R, Mosca L, American Heart Association, American Stroke Association. American Heart Association and American Stroke Association national survey of stroke risk awareness among women. Circulation. 2005;111(10):1321–6. doi: 10.1161/01.CIR.0000157745.46344.A1.CrossRefPubMedGoogle Scholar
  11. 11.
    Wann LS, Curtis AB, January CT, Ellenbogen KA, Lowe JE, Estes 3rd NA, et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (updating the 2006 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;123(1):104–23. doi: 10.1161/CIR.0b013e3181fa3cf4.CrossRefPubMedGoogle Scholar
  12. 12.
    Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (writing committee to revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006;114(7):e257–354. doi: 10.1161/CIRCULATIONAHA.106.177292.CrossRefPubMedGoogle Scholar
  13. 13.
    Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S76–99. doi: 10.1161/01.cir.0000437740.48606.d1.CrossRefPubMedGoogle Scholar
  14. 14.
    Berry JD, Dyer A, Cai X, Garside DB, Ning H, Thomas A, et al. Lifetime risks of cardiovascular disease. N Engl J Med. 2012;366(4):321–9. doi: 10.1056/NEJMoa1012848.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.•
    Goff Jr DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino Sr RB, Gibbons R, et al. ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2935–59. doi: 10.1016/j.jacc.2013.11.005. Acknowledging some of the problems with previous risk estimation tools such as the ATP-III version of the Framingham Risk Score for hard CHD, the 2013 ACC/AHA guidelines developed a new Pooled Cohort Equation from racially and geographically diverse prospective cohorts. This new risk assessment tool estimates 10-year risk for global ASCVD (i.e. MI and stroke), and has separate equations by gender and by race (non-Hispanics whites and blacks).
  16. 16.
    DeFilippis AP, Young R, Carrubba CJ, McEvoy JW, Budoff MJ, Blumenthal RS, et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162(4):266–75. doi: 10.7326/M14-1281.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Cook NR, Ridker PM. Further insight into the cardiovascular risk calculator: the roles of statins, revascularizations, and underascertainment in the Women’s Health Study. JAMA Internal Med. 2014;174(12):1964–71. doi: 10.1001/jamainternmed.2014.5336.CrossRefGoogle Scholar
  18. 18.
    Yeboah J, Sillau S, Delaney JC, Blaha MJ, Michos ED, Young R, et al. Implications of the new American College of Cardiology/American Heart Association cholesterol guidelines for primary atherosclerotic cardiovascular disease event prevention in a multi ethnic cohort: Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2015;169(3):387–95. doi: 10.1016/j.ahj.2014.12.018. e3.CrossRefPubMedGoogle Scholar
  19. 19.
    Kavousi M, Leening MJ, Nanchen D, Greenland P, Graham IM, Steyerberg EW, et al. Comparison of application of the ACC/AHA guidelines, Adult Treatment Panel III guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort. JAMA J Am Med Assoc. 2014;311(14):1416–23. doi: 10.1001/jama.2014.2632.CrossRefGoogle Scholar
  20. 20.
    Hennekens CH. Risk factors for coronary heart disease in women. Cardiol Clin. 1998;16(1):1–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Peters SA, Huxley RR, Woodward M. Do smoking habits differ between women and men in contemporary Western populations? Evidence from half a million people in the UK Biobank study. BMJ Open. 2014;4(12), e005663. doi: 10.1136/bmjopen-2014-005663.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Jousilahti P, Vartiainen E, Tuomilehto J, Puska P. Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14786 middle-aged men and women in Finland. Circulation. 1999;99(9):1165–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Jonsdottir LS, Sigfusson N, Gudnason V, Sigvaldason H, Thorgeirsson G. Do lipids, blood pressure, diabetes, and smoking confer equal risk of myocardial infarction in women as in men? The Reykjavik Study. J Cardiovasc Risk. 2002;9(2):67–76.CrossRefPubMedGoogle Scholar
  24. 24.
    Njolstad I, Arnesen E, Lund-Larsen PG. Smoking, serum lipids, blood pressure, and sex differences in myocardial infarction. A 12-year follow-up of the Finnmark Study. Circulation. 1996;93(3):450–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Grundtvig M, Hagen TP, German M, Reikvam A. Sex-based differences in premature first myocardial infarction caused by smoking: twice as many years lost by women as by men. Eur J Cardiovasc Prev Rehab Off J Eur Soc Cardiol Working Groups on Epidemiol Prev Cardiac Rehab Exerc Physiol. 2009;16(2):174–9. doi: 10.1097/HJR.0b013e328325d7f0.Google Scholar
  26. 26.
    Centers for Disease Control and Prevention NCfHS, Division of Health Interview Statistics, data from the National Health Interview Survey. Age-adjusted rate per 100 of civilian, noninstitutionalized population with diagnosed diabetes, by race and sex, United States, 1980–2011. In: Diabetes Public Health Resource. Centers for Disease Control and Prevention. 2014.
  27. 27.
    Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332(7533):73–8. doi: 10.1136/bmj.38678.389583.7C.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Natarajan S, Liao Y, Cao G, Lipsitz SR, McGee DL. Sex differences in risk for coronary heart disease mortality associated with diabetes and established coronary heart disease. Arch Intern Med. 2003;163(14):1735–40. doi: 10.1001/archinte.163.14.1735.CrossRefPubMedGoogle Scholar
  29. 29.
    Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37(5):1199–208.CrossRefPubMedGoogle Scholar
  30. 30.
    van den Hoogen PC, van Popele NM, Feskens EJ, van der Kuip DA, Grobbee DE, Hofman A, et al. Blood pressure and risk of myocardial infarction in elderly men and women: the Rotterdam study. J Hypertens. 1999;17(10):1373–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Psaty BM, Furberg CD, Kuller LH, Cushman M, Savage PJ, Levine D, et al. Association between blood pressure level and the risk of myocardial infarction, stroke, and total mortality: the cardiovascular health study. Arch Intern Med. 2001;161(9):1183–92.CrossRefPubMedGoogle Scholar
  32. 32.
    Miura K, Nakagawa H, Ohashi Y, Harada A, Taguri M, Kushiro T, et al. Four blood pressure indexes and the risk of stroke and myocardial infarction in Japanese men and women: a meta-analysis of 16 cohort studies. Circulation. 2009;119(14):1892–8. doi: 10.1161/CIRCULATIONAHA.108.823112.CrossRefPubMedGoogle Scholar
  33. 33.
    Mosca L, Manson JE, Sutherland SE, Langer RD, Manolio T, Barrett-Connor E. Cardiovascular disease in women: a statement for healthcare professionals from the American Heart Association. Writing Group Circ. 1997;96(7):2468–82.Google Scholar
  34. 34.
    Despres JP, Couillard C, Gagnon J, Bergeron J, Leon AS, Rao DC, et al. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler Thromb Vasc Biol. 2000;20(8):1932–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Jacobs Jr DR, Mebane IL, Bangdiwala SI, Criqui MH, Tyroler HA. High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the follow-up study of the Lipid Research Clinics Prevalence Study. Am J Epidemiol. 1990;131(1):32–47.PubMedGoogle Scholar
  36. 36.
    Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. Diabetes, blood lipids, and the role of obesity in coronary heart disease risk for women. The Framingham study. Ann Intern Med. 1977;87(4):393–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Castelli WP. Cholesterol and lipids in the risk of coronary artery disease—the Framingham Heart Study. Can J Cardiol. 1988;4(Suppl A):5A–10.PubMedGoogle Scholar
  38. 38.
    Lloyd-Jones DM, Nam BH, D’Agostino Sr RB, Levy D, Murabito JM, Wang TJ, et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA J Am Med Assoc. 2004;291(18):2204–11. doi: 10.1001/jama.291.18.2204.CrossRefGoogle Scholar
  39. 39.
    Garawi F, Devries K, Thorogood N, Uauy R. Global differences between women and men in the prevalence of obesity: is there an association with gender inequality? Eur J Clin Nutr. 2014;68(10):1101–6. doi: 10.1038/ejcn.2014.86.CrossRefPubMedGoogle Scholar
  40. 40.
    Krauss RM, Winston M, Fletcher BJ, Grundy SM. Obesity: impact on cardiovascular disease. Circulation. 1998;98(14):1472–6.CrossRefGoogle Scholar
  41. 41.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.CrossRefPubMedGoogle Scholar
  42. 42.
    Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875–81. doi: 10.1093/aje/kwm390.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32. doi: 10.7326/M14-1651.CrossRefPubMedGoogle Scholar
  44. 44.
    Schnabel RB. Is it all determined at menarche? Circulation. 2015;131(3):227–9. doi: 10.1161/CIRCULATIONAHA.114.013736.CrossRefPubMedGoogle Scholar
  45. 45.
    Charalampopoulos D, McLoughlin A, Elks CE, Ong KK. Age at menarche and risks of all-cause and cardiovascular death: a systematic review and meta-analysis. Am J Epidemiol. 2014;180(1):29–40. doi: 10.1093/aje/kwu113.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int J Obes. 2013;37(8):1036–43. doi: 10.1038/ijo.2012.177.CrossRefGoogle Scholar
  47. 47.
    Remsberg KE, Demerath EW, Schubert CM, Chumlea WC, Sun SS, Siervogel RM. Early menarche and the development of cardiovascular disease risk factors in adolescent girls: the Fels Longitudinal Study. J Clin Endocrinol Metab. 2005;90(5):2718–24. doi: 10.1210/jc.2004-1991.CrossRefPubMedGoogle Scholar
  48. 48.
    Canoy D, Beral V, Balkwill A, Wright FL, Kroll ME, Reeves GK, et al. Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation. 2015;131(3):237–44. doi: 10.1161/CIRCULATIONAHA.114.010070.CrossRefPubMedGoogle Scholar
  49. 49.
    Jacobsen BK, Heuch I, Kvale G. Association of low age at menarche with increased all-cause mortality: a 37-year follow-up of 61,319 Norwegian women. Am J Epidemiol. 2007;166(12):1431–7. doi: 10.1093/aje/kwm237.CrossRefPubMedGoogle Scholar
  50. 50.
    Tamakoshi K, Yatsuya H, Tamakoshi A, Group JS. Early age at menarche associated with increased all-cause mortality. Eur J Epidemiol. 2011;26(10):771–8. doi: 10.1007/s10654-011-9623-0.CrossRefPubMedGoogle Scholar
  51. 51.
    Ford ES, Capewell S. Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: concealed leveling of mortality rates. J Am Coll Cardiol. 2007;50(22):2128–32. doi: 10.1016/j.jacc.2007.05.056.CrossRefPubMedGoogle Scholar
  52. 52.
    Rosano GM, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular disease: the evidence. Climacteric J Int Menopause Soc. 2007;10 Suppl 1:19–24. doi: 10.1080/13697130601114917.CrossRefGoogle Scholar
  53. 53.
    Gambacciani M, Ciaponi M, Cappagli B, De Simone L, Orlandi R, Genazzani AR. Prospective evaluation of body weight and body fat distribution in early postmenopausal women with and without hormonal replacement therapy. Maturitas. 2001;39(2):125–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Ferrannini E. Physiological and metabolic consequences of obesity. Metab Clin Exp. 1995;44(9 Suppl 3):15–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Matthews KA, Crawford SL, Chae CU, Everson-Rose SA, Sowers MF, Sternfeld B, et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J Am Coll Cardiol. 2009;54(25):2366–73. doi: 10.1016/j.jacc.2009.10.009.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Ouyang P, Michos ED, Karas RH. Hormone replacement therapy and the cardiovascular system lessons learned and unanswered questions. J Am Coll Cardiol. 2006;47(9):1741–53. doi: 10.1016/j.jacc.2005.10.076.CrossRefPubMedGoogle Scholar
  57. 57.
    Manson JE, Allison MA, Rossouw JE, Carr JJ, Langer RD, Hsia J, et al. Estrogen therapy and coronary-artery calcification. N Engl J Med. 2007;356(25):2591–602. doi: 10.1056/NEJMoa071513.CrossRefPubMedGoogle Scholar
  58. 58.
    Rossouw JE, Prentice RL, Manson JE, Wu L, Barad D, Barnabei VM, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA J Am Med Assoc. 2007;297(13):1465–77. doi: 10.1001/jama.297.13.1465.CrossRefGoogle Scholar
  59. 59.
    Parikh NI, Cnattingius S, Dickman PW, Mittleman MA, Ludvigsson JF, Ingelsson E. Parity and risk of later-life maternal cardiovascular disease. Am Heart J. 2010;159(2):215–21. doi: 10.1016/j.ahj.2009.11.017. e6.CrossRefPubMedGoogle Scholar
  60. 60.
    Ness RB, Harris T, Cobb J, Flegal KM, Kelsey JL, Balanger A, et al. Number of pregnancies and the subsequent risk of cardiovascular disease. N Engl J Med. 1993;328(21):1528–33. doi: 10.1056/NEJM199305273282104.CrossRefPubMedGoogle Scholar
  61. 61.
    Group HSCR, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002. doi: 10.1056/NEJMoa0707943.CrossRefGoogle Scholar
  62. 62.
    Fadl HE, Ostlund IK, Magnuson AF, Hanson US. Maternal and neonatal outcomes and time trends of gestational diabetes mellitus in Sweden from 1991 to 2003. Diabet Med J Br Diabet Assoc. 2010;27(4):436–41. doi: 10.1111/j.1464-5491.2010.02978.x.CrossRefGoogle Scholar
  63. 63.
    Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773–9. doi: 10.1016/S0140-6736(09)60731-5.CrossRefPubMedGoogle Scholar
  64. 64.
    Lauenborg J, Mathiesen E, Hansen T, Glumer C, Jorgensen T, Borch-Johnsen K, et al. The prevalence of the metabolic syndrome in a Danish population of women with previous gestational diabetes mellitus is three-fold higher than in the general population. J Clin Endocrinol Metab. 2005;90(7):4004–10. doi: 10.1210/jc.2004-1713.CrossRefPubMedGoogle Scholar
  65. 65.
    Pirkola J, Pouta A, Bloigu A, Miettola S, Hartikainen AL, Jarvelin MR, et al. Prepregnancy overweight and gestational diabetes as determinants of subsequent diabetes and hypertension after 20-year follow-up. J Clin Endocrinol Metab. 2010;95(2):772–8. doi: 10.1210/jc.2009-1075.CrossRefPubMedGoogle Scholar
  66. 66.
    Fadl H, Magnuson A, Ostlund I, Montgomery S, Hanson U, Schwarcz E. Gestational diabetes mellitus and later cardiovascular disease: a Swedish population based case–control study. BJOG Int J Obstet Gynaecol. 2014;121(12):1530–6. doi: 10.1111/1471-0528.12754.CrossRefGoogle Scholar
  67. 67.
    Evans CS, Gooch L, Flotta D, Lykins D, Powers RW, Landsittel D, et al. Cardiovascular system during the postpartum state in women with a history of preeclampsia. Hypertension. 2011;58(1):57–62. doi: 10.1161/HYPERTENSIONAHA.111.173278.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Ahmed R, Dunford J, Mehran R, Robson S, Kunadian V. Pre-eclampsia and future cardiovascular risk among women: a review. J Am Coll Cardiol. 2014;63(18):1815–22. doi: 10.1016/j.jacc.2014.02.529.CrossRefPubMedGoogle Scholar
  69. 69.
    Stekkinger E, Zandstra M, Peeters LL, Spaanderman ME. Early-onset preeclampsia and the prevalence of postpartum metabolic syndrome. Obstet Gynecol. 2009;114(5):1076–84. doi: 10.1097/AOG.0b013e3181b7b242.CrossRefPubMedGoogle Scholar
  70. 70.
    Drost JT, Arpaci G, Ottervanger JP, de Boer MJ, van Eyck J, van der Schouw YT, et al. Cardiovascular risk factors in women 10 years post early preeclampsia: the Preeclampsia Risk EValuation in FEMales study (PREVFEM). Eur J Prev Cardiol. 2012;19(5):1138–44. doi: 10.1177/1741826711421079.CrossRefPubMedGoogle Scholar
  71. 71.
    Ray JG, Vermeulen MJ, Schull MJ, Redelmeier DA. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet. 2005;366(9499):1797–803. doi: 10.1016/S0140-6736(05)67726-4.CrossRefPubMedGoogle Scholar
  72. 72.
    Lin YS, Tang CH, Yang CY, Wu LS, Hung ST, Hwa HL, et al. Effect of pre-eclampsia-eclampsia on major cardiovascular events among peripartum women in Taiwan. Am J Cardiol. 2011;107(2):325–30. doi: 10.1016/j.amjcard.2010.08.073.CrossRefPubMedGoogle Scholar
  73. 73.•
    Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. 2013;28(1):1–19. doi: 10.1007/s10654-013-9762-6. This meta-analysis of 43 studies found that women with a history of pre-eclampsia had an approximately a doubling of risk for subsequent cardiovascular and cerebrovascular events.CrossRefPubMedGoogle Scholar
  74. 74.
    Hoffman LK, Ehrmann DA. Cardiometabolic features of polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab. 2008;4(4):215–22. doi: 10.1038/ncpendmet0755.CrossRefPubMedGoogle Scholar
  75. 75.
    Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999;84(1):165–9. doi: 10.1210/jcem.84.1.5393.PubMedGoogle Scholar
  76. 76.
    Orio Jr F, Palomba S, Cascella T, De Simone B, Di Biase S, Russo T, et al. Early impairment of endothelial structure and function in young normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89(9):4588–93. doi: 10.1210/jc.2003-031867.CrossRefPubMedGoogle Scholar
  77. 77.
    Talbott EO, Guzick DS, Sutton-Tyrrell K, McHugh-Pemu KP, Zborowski JV, Remsberg KE, et al. Evidence for association between polycystic ovary syndrome and premature carotid atherosclerosis in middle-aged women. Arterioscler Thromb Vasc Biol. 2000;20(11):2414–21.CrossRefPubMedGoogle Scholar
  78. 78.
    Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a pathological perspective. Am J Pathol. 2008;173(3):600–9. doi: 10.2353/ajpath.2008.071008.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    del Rincon ID, Williams K, Stern MP, Freeman GL, Escalante A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 2001;44(12):2737–45.CrossRefPubMedGoogle Scholar
  80. 80.
    Manzi S, Meilahn EN, Rairie JE, Conte CG, Medsger Jr TA, Jansen-McWilliams L, et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am J Epidemiol. 1997;145(5):408–15.CrossRefPubMedGoogle Scholar
  81. 81.
    Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation. 1998;98(8):731–3.CrossRefPubMedGoogle Scholar
  82. 82.
    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43. doi: 10.1056/NEJM200003233421202.CrossRefPubMedGoogle Scholar
  83. 83.
    Khera A, McGuire DK, Murphy SA, Stanek HG, Das SR, Vongpatanasin W, et al. Race and gender differences in C-reactive protein levels. J Am Coll Cardiol. 2005;46(3):464–9. doi: 10.1016/j.jacc.2005.04.051.CrossRefPubMedGoogle Scholar
  84. 84.
    Bellasi A, Lacey C, Taylor AJ, Raggi P, Wilson PW, Budoff MJ, et al. Comparison of prognostic usefulness of coronary artery calcium in men versus women (results from a meta- and pooled analysis estimating all-cause mortality and coronary heart disease death or myocardial infarction). Am J Cardiol. 2007;100(3):409–14. doi: 10.1016/j.amjcard.2007.03.037.CrossRefPubMedGoogle Scholar
  85. 85.
    Lakoski SG, Greenland P, Wong ND, Schreiner PJ, Herrington DM, Kronmal RA, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham Risk Score: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2007;167(22):2437–42. doi: 10.1001/archinte.167.22.2437.CrossRefPubMedGoogle Scholar
  86. 86.
    Blaha MJ, Blumenthal RS, Budoff MJ, Nasir K. Understanding the utility of zero coronary calcium as a prognostic test: a Bayesian approach. Circ Cardiovasc Qual Outcomes. 2011;4(2):253–6. doi: 10.1161/CIRCOUTCOMES.110.958496.CrossRefPubMedGoogle Scholar
  87. 87.
    Budoff MJ, McClelland RL, Nasir K, Greenland P, Kronmal RA, Kondos GT, et al. Cardiovascular events with absent or minimal coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2009;158(4):554–61. doi: 10.1016/j.ahj.2009.08.007.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Mora S, Redberg RF, Cui Y, Whiteman MK, Flaws JA, Sharrett AR, et al. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA J Am Med Assoc. 2003;290(12):1600–7. doi: 10.1001/jama.290.12.1600.CrossRefGoogle Scholar
  89. 89.
    Gulati M, Black HR, Shaw LJ, Arnsdorf MF, Merz CN, Lauer MS, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353(5):468–75. doi: 10.1056/NEJMoa044154.CrossRefPubMedGoogle Scholar
  90. 90.
    Blair SN, Kampert JB, Kohl 3rd HW, Barlow CE, Macera CA, Paffenbarger Jr RS, et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA J Am Med Assoc. 1996;276(3):205–10.CrossRefGoogle Scholar
  91. 91.
    Kokkinos PF, Holland JC, Pittaras AE, Narayan P, Dotson CO, Papademetriou V. Cardiorespiratory fitness and coronary heart disease risk factor association in women. J Am Coll Cardiol. 1995;26(2):358–64.CrossRefPubMedGoogle Scholar
  92. 92.
    Xu X, Bao H, Strait K, Spertus JA, Lichtman JH, D’Onofrio G, et al. Sex differences in perceived stress and early recovery in young and middle-aged patients with acute myocardial infarction. Circulation. 2015;131(7):614–23. doi: 10.1161/CIRCULATIONAHA.114.012826.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Dupre ME, George LK, Liu G, Peterson ED. Association between divorce and risks for acute myocardial infarction. Circ Cardiovasc Qual Outcomes. 2015;8(3):244–51. doi: 10.1161/CIRCOUTCOMES.114.001291.CrossRefPubMedGoogle Scholar
  94. 94.
    Mehta LS. Cardiovascular disease and depression in women. Heart Failure Clin. 2011;7(1):39–45. doi: 10.1016/j.hfc.2010.08.005.CrossRefGoogle Scholar
  95. 95.
    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA J Am Med Assoc. 2014;311(5):507–20. doi: 10.1001/jama.2013.284427.CrossRefGoogle Scholar
  96. 96.
    Engberding N, Wenger NK. Management of hypertension in women. Hypertens Res. 2012;35(3):251–60. doi: 10.1038/hr.2011.210.
  97. 97.
    Gutierrez J, Ramirez G, Rundek T, Sacco RL. Statin therapy in the prevention of recurrent cardiovascular events: a sex-based meta-analysis. Arch Intern Med. 2012;172(12):909–19. doi: 10.1001/archinternmed.2012.2145.CrossRefPubMedGoogle Scholar
  98. 98.
    Mora S, Glynn RJ, Hsia J, MacFadyen JG, Genest J, Ridker PM. Statins for the primary prevention of cardiovascular events in women with elevated high-sensitivity C-reactive protein or dyslipidemia: results from the Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) and meta-analysis of women from primary prevention trials. Circulation. 2010;121(9):1069–77. doi: 10.1161/CIRCULATIONAHA.109.906479.PubMedCentralCrossRefPubMedGoogle Scholar
  99. 99.•
    Kostis WJ, Cheng JQ, Dobrzynski JM, Cabrera J, Kostis JB. Meta-analysis of statin effects in women versus men. J Am Coll Cardiol. 2012;59(6):572–82. doi: 10.1016/j.jacc.2011.09.067. This meta-analysis showed that statins were effective for prevention of ASCVD events and all-cause mortality in women similar to men. The benefit of statins was statistically significant for both men and women in both sexes, regardless of baseline risk or type of endpoint and in both primary and secondary prevention.
  100. 100.
    Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889–934. doi: 10.1016/j.jacc.2013.11.002.CrossRefPubMedGoogle Scholar
  101. 101.
    Mora S. Aspirin therapy in women: back to the ABCs. Circ Cardiovasc Qual Outcomes. 2009;2(2):63–4. doi: 10.1161/CIRCOUTCOMES.109.854851.CrossRefPubMedGoogle Scholar
  102. 102.
    Seshasai SR, Wijesuriya S, Sivakumaran R, Nethercott S, Erqou S, Sattar N, et al. Effect of aspirin on vascular and nonvascular outcomes: meta-analysis of randomized controlled trials. Arch Intern Med. 2012;172(3):209–16. doi: 10.1001/archinternmed.2011.628.CrossRefPubMedGoogle Scholar
  103. 103.
    Ridker PM, Cook NR, Lee IM, Gordon D, Gaziano JM, Manson JE, et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005;352(13):1293–304. doi: 10.1056/NEJMoa050613.CrossRefPubMedGoogle Scholar
  104. 104.•
    van Kruijsdijk RC, Visseren FL, Ridker PM, Dorresteijn JA, Buring JE, van der Graaf Y, et al. Individualised prediction of alternate-day aspirin treatment effects on the combined risk of cancer, cardiovascular disease and gastrointestinal bleeding in healthy women. Heart. 2015;101(5):369–76. doi: 10.1136/heartjnl-2014-306342. This long-term (15 year) follow-up of the Women’s Health Study (a randomized trial that evaluated alternate day dosing of low-dose aspirin compare to placebo in primary prevention) found that low-dose aspirin was ineffective or harmful in the majority of women in primary prevention. There may be benefit for treatment select women ≥65 years who are not at increased risk of bleeding.CrossRefPubMedGoogle Scholar
  105. 105.
    Miedema MD, Duprez DA, Misialek JR, Blaha MJ, Nasir K, Silverman MG, et al. Use of coronary artery calcium testing to guide aspirin utilization for primary prevention: estimates from the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Qual Outcomes. 2014;7(3):453–60. doi: 10.1161/CIRCOUTCOMES.113.000690.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rebeccah A. McKibben
    • 1
  • Mahmoud Al Rifai
    • 1
  • Lena M. Mathews
    • 1
  • Erin D. Michos
    • 1
    • 2
    Email author
  1. 1.Ciccarone Center for the Prevention of Heart DiseaseJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Division of CardiologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations