Skip to main content
Log in

Dipeptidyl Peptidase-4 Inhibitors and Heart Failure: Friends or Foes?

  • Diabetes + Insulin Resistance (M Rutter, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) is one of the leading causes of morbidity and mortality. Several risk factors have been identified that have been consistently associated with the development of HF, including type 2 diabetes and glucose-lowering agents. However, different drugs for type 2 diabetes may have diverse, and even divergent, effects on heart failure. The insulin-sensitizing thiazolidinediones have been associated with increased rates of HF in randomized controlled trials, whereas for other drugs, this relationship is less clear. Before the publication of the SAVOR-TIMI53 trial, available data suggested that DPP4 inhibitors could have a protective effect with respect to incident HF. The possibility of a causal finding cannot be ruled out, but it appears rather unlikely, considering that another cardiovascular outcome study showed a trend toward an increased risk with a different molecule of the same class, and that some epidemiological studies associated sitagliptin to an increased risk of HF. This review explores the possible mechanisms underlying the association of DPP4 inhibitor use with an increased risk for incident HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. McMurray JJ, Petrie MC, Murdoch DR, Davie AP. Clinical epidemiology of heart failure: public and private health burden. Eur Heart J. 1998;19(Suppl P):P9–16. Heart failure is one of the leading causes of morbidity and mortality and its prevalence continues to rise.

    PubMed  Google Scholar 

  2. Levy D et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347:1397–402. Before the publication of the SAVOR-TIMI53 trial, available data suggested that DPP4 inhibitors could have a protective effect with respect to heart failure.

    Article  PubMed  Google Scholar 

  3. Schocken DD, Arrieta MI, Leaverton PE, Ross EA. Prevalence and mortality rate of congestive heart failure in the United States. J Am Coll Cardiol. 1992;20:301–6. The risk of hospitalization for HF with saxagliptin, compared to placebo, in the SAVOR-TIMI53 study was about 26%.

    Article  CAS  PubMed  Google Scholar 

  4. Roger VL et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344–50. The possible mechanisms underlying the association of DPP4i with HF include: a) reduction of GLP1 [9-36]; b) increase of brain natriuretic peptide; c) increase of neuropeptide Y and substance P.

    Article  CAS  PubMed  Google Scholar 

  5. Fonarow GC et al. Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: findings from OPTIMIZE-HF. Arch Intern Med. 2008;168:847–54. Available experimental and clinical data are insufficient to provide a clear picture of causal relationships between DPP4 inhibition and signs and symptoms of HF.

    Article  PubMed  Google Scholar 

  6. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, et al. Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail. 2014;2(5):440–6.

    Article  PubMed  Google Scholar 

  7. Nasir S, Aguilar D. Congestive heart failure and diabetes: balancing glycemic control with heart failure improvement. Am J Cardiol. 2012;110(9 Suppl):50B–7.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Swan JW, Anker SD, Walton C, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997;30:527–32.

    Article  CAS  PubMed  Google Scholar 

  9. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116:434–48.

    Article  CAS  PubMed  Google Scholar 

  10. Tenenbaum A, Motro M, Fisman EZ, Leor J, Freimark D, Boyko V, et al. Functional class in patients with heart failure is associated with the development of diabetes. Am J Med. 2003;114:271–5.

    Article  PubMed  Google Scholar 

  11. Preiss D, Zetterstrand S, McMurray JJ, Ostergren J, Michelson EL, Granger CB, et al. Predictors of development of diabetes in patients with chronic heart failure in the Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity (CHARM) program. Diabetes Care. 2009;32:915–20.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Torp-Pedersen C, Metra M, Charlesworth A, Spark P, Lukas MA, Poole-Wilson PA, et al. Effects of metoprolol and carvedilol on pre-existing and new onset diabetes in patients with chronic heart failure: data from the Carvedilol Or Metoprolol European Trial (COMET). Heart. 2007;93:968–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006;119:591–9.

    Article  PubMed  Google Scholar 

  14. Egstrup M, Schou M, Gustafsson I, Kistorp CN, Hildebrandt PR, Tuxen CD. Oral glucose tolerance testing in an outpatient heart failure clinic reveals a high proportion of undiagnosed diabetic patients with an adverse prognosis. Eur J Heart Fail. 2011;13:319–26.

    Article  PubMed  Google Scholar 

  15. Mosterd A, Cost B, Hoes AW, de Bruijne MC, Deckers JW, Hofman A, et al. The prognosis of heart failure in the general population: the Rotterdam Study. Eur Heart J. 2001;22:1318–27.

    Article  CAS  PubMed  Google Scholar 

  16. Aguilar D, Solomon SD, Kober L, Rouleau JL, Skali H, McMurray JJ, et al. Newly diagnosed and previously known diabetes mellitus and 1-year outcomes of acute myocardial infarction: the VALsartan In Acute myocardial iNfarcTion (VALIANT) trial. Circulation. 2004;110:1572–8.

    Article  PubMed  Google Scholar 

  17. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J. 2006;27:65–75.

    Article  PubMed  Google Scholar 

  18. Murcia AM, Hennekens CH, Lamas GA, Jimenez-Navarro M, Rouleau JL, Flaker GC, et al. Impact of diabetes on mortality in patients with myocardial infarction and left ventricular dysfunction. Arch Intern Med. 2004;164:2273–9.

    Article  PubMed  Google Scholar 

  19. Jacob S, Rett K, Henriksen EJ. Antihypertensive therapy and insulin sensitivity: do we have to redefine the role of beta-blocking agents? Am J Hypertens. 1998;11(10):1258–65.

    Article  CAS  PubMed  Google Scholar 

  20. Haas SJ, Vos T, Gilbert RE, Krum H. Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J. 2003;146:848–53.

    Article  CAS  PubMed  Google Scholar 

  21. Shekelle PG, Rich MW, Morton SC, Atkinson CS, Tu W, Maglione M, et al. Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials. J Am Coll Cardiol. 2003;41:1529–38.

    Article  CAS  PubMed  Google Scholar 

  22. Deedwania PC, Giles TD, Klibaner M, Ghali JK, Herlitz J, Hildebrandt P, et al. Efficacy, safety and tolerability of metoprolol CR/XL in patients with diabetes and chronic heart failure: experiences from MERIT-HF. Am Heart J. 2005;149:159–67.

    Article  CAS  PubMed  Google Scholar 

  23. Domanski M, Krause-Steinrauf H, Deedwania P, Follmann D, Ghali JK, Gilbert E, et al. The effect of diabetes on outcomes of patients with advanced heart failure in the BEST trial. J Am Coll Cardiol. 2003;42:914–22.

    Article  PubMed  Google Scholar 

  24. Vermes E, Ducharme A, Bourassa MG, Lessard M, White M, Tardif JC. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the Studies Of Left Ventricular Dysfunction (SOLVD). Circulation. 2003;107:1291–6.

    Article  CAS  PubMed  Google Scholar 

  25. Yusuf S, Ostergren JB, Gerstein HC, Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on the development of a new diagnosis of diabetes mellitus in patients with heart failure. Circulation. 2005;112:48–53.

    Article  CAS  PubMed  Google Scholar 

  26. Zandbergen AA, Lamberts SW, Janssen JA, Bootsma AH. Short-term administration of an angiotensin-receptor antagonist in patients with impaired fasting glucose improves insulin sensitivity and increases free IGF-I. Eur J Endocrinol. 2006;155(2):293–6.

    Article  CAS  PubMed  Google Scholar 

  27. Maggioni AP, Greene SJ, Fonarow GC, et al. Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial. Eur Heart J. 2013;34:3117–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gheorghiade M, Böhm M, Greene SJ, et al. Effect of aliskiren on postdischarge mortality and heart failure readmissions among patients hospitalized for heart failure: the ASTRONAUT randomized trial. JAMA. 2013;309:1125–35.

    Article  CAS  PubMed  Google Scholar 

  29. Sarafidis PA, McFarlane SI, Bakris GL. Antihypertensive agents, insulin sensitivity, and new-onset diabetes. Curr Diab Rep. 2007;7(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  30. Monami M, Ungar A, Lamanna C, Bardini G, Pala L, Dicembrini I, et al. Effects of antihypertensive treatments on incidence of diabetes: a case-control study. J Endocrinol Investig. 2012;35(2):135–8.

    CAS  Google Scholar 

  31. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 2000;342(13):905–12.

    Article  CAS  PubMed  Google Scholar 

  32. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  33. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368(9541):1096–105.

    Article  Google Scholar 

  34. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    Article  CAS  PubMed  Google Scholar 

  35. Masoudi FA, Inzucchi SE, Wang Y, Havranek EP, Foody JM, Krumholz HM. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111(5):583–90.

    Article  CAS  PubMed  Google Scholar 

  36. Liu SC, Tu YK, Chien MN, Chien KL. Effect of antidiabetic agents added to metformin on glycaemic control, hypoglycaemia and weight change in patients with type 2 diabetes: a network meta-analysis. Diabetes Obes Metab. 2012;14(9):810–20.

    Article  CAS  PubMed  Google Scholar 

  37. Mannucci E, Monami M, Lamanna C, Gori F, Marchionni N. Prevention of cardiovascular disease through glycemic control in type 2 diabetes: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2009;19(9):604–12.

    Article  CAS  PubMed  Google Scholar 

  38. Curione M, Di Bona S, Amato S, Turinese I, Tarquini G, Gatti A, et al. Lack of the QTc physiologic decrease during cardiac stress test in patients with type 2 diabetes treated with secretagogues. Acta Diabetol. 2014;51(1):31–3.

    Article  PubMed  Google Scholar 

  39. Ballagi-Pordány G, Köszeghy A, Koltai MZ, Aranyi Z, Pogátsa G. Divergent cardiac effects of the first and second generation hypoglycemic sulfonylurea compounds. Diabetes Res Clin Pract. 1990;8:109–14.

    Article  PubMed  Google Scholar 

  40. Duncker DJ, van Zon NS, Altman JD, Pavek DJ, Bache RJ. Role of K+ ATP channels in coronary vasodilation during exercise. Circulation. 1993;88:1245–53.

    Article  CAS  PubMed  Google Scholar 

  41. Grover GJ, Sleph PG, Dzwonick BS. Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interactions with adenosine A1-receptors. Circulation. 1992;86:1310–6.

    Article  CAS  PubMed  Google Scholar 

  42. Garratt KN, Brady PA, Hassinger NL, Grill DE, Terzic A, Holmes DR. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol. 1999;33:119–24.

    Article  CAS  PubMed  Google Scholar 

  43. Scognamiglio R, Avogaro A, Vigili de Kreutzenberg S, Negut C, Palisi M, Bagolin E, et al. Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in type 2 diabetes. Diabetes. 2002;51(3):808–12.

    Article  CAS  PubMed  Google Scholar 

  44. Misbin RI, Green L, Stadel BV, Gueriguian JL, Gubbi A, Fleming GA. Lactic acidosis in patients with diabetes treated with metformin. N Engl J Med. 1998;338:265–6.

    Article  CAS  PubMed  Google Scholar 

  45. Berchtold P, Dahlqvist A, Gustafson A, Asp NG. Effects of a biguanide (Metformin) on vitamin B 12 and folic acid absorption and intestinal enzyme activities. Scand J Gastroenterol. 1971;6(8):751–4.

    Article  CAS  PubMed  Google Scholar 

  46. Rossi GP, Maiolino G, Seccia TM, Burlina A, Zavattiero S, Cesari M, et al. Hyperhomocysteinemia predicts total and cardiovascular mortality in high-risk women. J Hypertens. 2006;24(5):851–9.

    Article  CAS  PubMed  Google Scholar 

  47. Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130:1579–88. The SAVOR TIMI-53 is the largest trial with a DPP-4 inhibitor to date, which unexpectedly reported an increased risk of hospitalization for heart failure in patients treated with saxagliptin versus placebo.

    Article  CAS  PubMed  Google Scholar 

  48. Sato Y, Koshioka S, Kirino Y, Kamimoto T, Kawazoe K, Abe S, et al. Role of dipeptidyl peptidase IV (DPP4) in the development of dyslipidemia: DPP4 contributes to the steroid metabolism pathway. Life Sci. 2011;88:43–9.

    Article  CAS  PubMed  Google Scholar 

  49. Monami M, Lamanna C, Desideri CM, Mannucci E. DPP-4 inhibitors and lipids: systematic review and meta-analysis. Adv Ther. 2012;29:14–25.

    Article  CAS  PubMed  Google Scholar 

  50. Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54:1214–23.

    Article  CAS  PubMed  Google Scholar 

  51. Davidson MH. Cardiovascular effects of glucagon-like peptide-1 agonists. Am J Cardiol. 2011;108(3 Suppl):33B–41B.

    Article  CAS  PubMed  Google Scholar 

  52. Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:38–47.

    Article  CAS  PubMed  Google Scholar 

  53. Jackson EK, Mi Z, Tofovic SP, Gillespie DG. Effect of dipeptidyl peptidase 4 inhibition on arterial blood pressure is context dependent. Hypertension. 2015;65:238–49.

    Article  CAS  PubMed  Google Scholar 

  54. Basu A, Charkoudian N, Schrage W, et al. Beneficial effects of GLP-1 onendothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab. 2007;293:E1289–95.

    Article  CAS  PubMed  Google Scholar 

  55. Mason RP, Jacob RF, Kubant R, Ciszewski A, Corbalan JJ, Malinski T. Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats. J Cardiovasc Pharmacol. 2012;60:467–73.

    Article  CAS  PubMed  Google Scholar 

  56. Monami M, Ahrén B, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15:112–20.

    Article  CAS  PubMed  Google Scholar 

  57. Patil HR, Al Badarin FJ, Al Shami HA, Bhatti SK, Lavie CJ, Bell DS, et al. Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus. Am J Cardiol. 2012;110:826–33.

    Article  CAS  PubMed  Google Scholar 

  58. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35. This is the largest RCT with a DPP-4 inhibitors after SAVOR-TIMI 53, showing a non-significant trend toward an increase risk of hospitalization for heart failure.

    Article  CAS  PubMed  Google Scholar 

  59. Gros R, You X, Baggio LL, et al. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology. 2003;144:2242–52.

    Article  CAS  PubMed  Google Scholar 

  60. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962–5.

    Article  CAS  PubMed  Google Scholar 

  61. Sokos GG, Nikolaidis LA, Mankad S, et al. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12:694–9.

    Article  CAS  PubMed  Google Scholar 

  62. Bose AK, Mocanu MM, Carr RD, et al. Myocardial ischemia-reperfusion injury is attenuated by intact glucagon-like peptide-1(GLP-1) in the in vitro rat heart and may involve the p70s6K pathway. Cardiovasc Drug Ther. 2007;21:253–6.

    Article  CAS  Google Scholar 

  63. Zhao T, Parikh P, Bhashyam S, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and post-ischemic isolated rat hearts. J Pharmacol Exp Ther. 2006;317:1106–13.

    Article  CAS  PubMed  Google Scholar 

  64. Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110:955–61.

    Article  CAS  PubMed  Google Scholar 

  65. Ravassa S, Zudaire A, Carr RD, et al. Antiapoptotic effects of GLP-1 in murineHL-1 cardiomyocytes. Am J Physiol Heart Circ Physiol. 2011;300:H1361–72.

    Article  CAS  PubMed  Google Scholar 

  66. Sauvé M, Ban K, Momen MA, et al. Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes. 2010;59:1063–73.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Ye Y, Keyes KT, Zhang C, et al. The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol. 2010;298:H1454–65.

    Article  CAS  PubMed  Google Scholar 

  68. Yin M, Silljé HH, Meissner M, et al. Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol. 2011;10:85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Takahashi A, Asakura M, Ito S, Min KD, Shindo K, Yan Y, et al. Dipeptidyl-peptidase IV inhibition improves pathophysiology of heart failure and increases survival rate in pressure-overloaded mice. Am J Physiol Heart Circ Physiol. 2013;304:H1361–9.

    Article  CAS  PubMed  Google Scholar 

  70. Read PA, Khan FZ, Heck PM, et al. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging. 2010;3:195–201.

    Article  PubMed  Google Scholar 

  71. Monami M, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2014;24:689–97. This meta-analysis of RCTs suggests that the increased risk of heart failure observed with saxagliptin in SAVOR-TIMI 53 is class effect.

    Article  CAS  PubMed  Google Scholar 

  72. Bethel MA, Green JB, Milton J, Tajar A, Engel SS, Califf RM, et al. Regional, age, and sex differences in baseline characteristics of patients enrolled in the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). Diabetes Obes Metab. 2015. doi:10.1111/dom.12441.

    Google Scholar 

  73. Green JB, Bethel MA, Paul SK, Ring A, Kaufman KD, Shapiro DR, et al. Rationale, design, and organization of a randomized, controlled Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) in patients with type 2 diabetes and established cardiovascular disease. Am Heart J. 2013;166:983–9.

    Article  CAS  PubMed  Google Scholar 

  74. Wang KL, Liu CJ, Chao TF, Huang CM, Wu CH, Chen SJ, et al. Sitagliptin and the risk of hospitalization for heart failure: a population-based study. Int J Cardiol. 2014;177:86–90.

    Article  PubMed  Google Scholar 

  75. Weir DL, McAlister FA, Senthilselvan A, Minhas-Sandhu JK, Eurich DT. Sitagliptin use in patients with diabetes and heart failure: a population-based retrospective cohort study. JACC Heart Fail. 2014;2:573–82.

    Article  PubMed  Google Scholar 

  76. Currie CJ, Holden SE. Optimizing clinical outcomes resulting from glucose-lowering therapies in type 2 diabetes: increased confidence about the DPP-4 inhibitors and continued concerns regarding sulphonylureas and exogenous insulin. Diabetes Obes Metab. 2014;16(10):881–4.

    Article  CAS  PubMed  Google Scholar 

  77. Brandt I, Lambeir AM, Ketelslegers JM, Vanderheyden M, Scharpé S, De Meester I. Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem. 2006;52(1):82–7.

    Article  CAS  PubMed  Google Scholar 

  78. dos Santos L, Salles TA, Arruda-Junior DF, Campos LC, Pereira AC, Barreto AL, et al. Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure. Circ Heart Fail. 2013;6(5):1029–38.

    Article  PubMed  Google Scholar 

  79. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  PubMed  Google Scholar 

  80. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–50.

    Article  CAS  PubMed  Google Scholar 

  81. Costello-Boerrigter LC, Burnett Jr JC. The prognostic value of N-terminal proB-type natriuretic peptide. Nat Clin Pract Cardiovasc Med. 2005;2(4):194–201.

    Article  CAS  PubMed  Google Scholar 

  82. Shanks J, Herring N. Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides. Am J Physiol Regul Integr Comp Physiol. 2013;305(12):R1411–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Devin JK, Pretorius M, Nian H, Yu C, Billings 4th FT, Brown NJ. Substance P increases sympathetic activity during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition. Hypertension. 2014;63(5):951–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Edoardo Mannucci received speaking honoraria, consultancy fee, and/or research grants from AstraZeneca, Boehringer Ingelheim, Merck, Novartis, and Takeda. Matteo Monami reports personal fees from AstraZeneca, personal fees from Boehringer, personal fees from Eli Lilly, personal fees from Novo Nordisk, personal fees from Sanofi, personal fees from Takeda, personal fees from BMS, and personal fees from Merck outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Monami.

Additional information

This article is part of the Topical Collection on Diabetes + Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monami, M., Mannucci, E. Dipeptidyl Peptidase-4 Inhibitors and Heart Failure: Friends or Foes?. Curr Cardiovasc Risk Rep 9, 37 (2015). https://doi.org/10.1007/s12170-015-0465-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-015-0465-2

Keywords

Navigation