Skip to main content
Log in

New Treatment Approaches for Dyslipidemia and its Management

  • Secondary Prevention and Intervention (J Foody, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

The field of lipidology is evolving rapidly. Two novel medications have recently been approved for use in homozygous familial hypercholesterolemia (HoFH); the Apolipoprotein B (Apo B) mRNA antisense oligonucleotide (ASO), mipomersen (Kynamro®) and the microsomal triglyceride transfer protein (MTP) inhibitor, lomitapide (Juxtapid®). Equally important have been the disappointments in cholesterol research; the halting of further investigation into the cholesteryl ester transfer protein (CETP) inhibitor dalcetrapib, yet two others remain in development. The failure of the combination of extended release niacin and laropiprant to show benefit when combined with statin therapy has lead to the discontinuation of this product in Europe. Perhaps one of the most exciting avenues of future research is into the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vega GL, Grundy SM. Mechanisms of primary hypercholesterolemia in humans. Am Heart J. 1987;113(2 Pt 2):493–502.

    Article  PubMed  CAS  Google Scholar 

  2. Goldberg AC, Hopkins PN, Toth PP, et al. National Lipid Association Expert Panel on Familial Hypercholesterolemia. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5(3 Suppl):S1–8.

    Article  PubMed  Google Scholar 

  3. Aegerion Pharmaceuticals, Inc. December 24, 2012. FDA approves Aegerion Pharmaceuticals’ JUXTAPID(TM) (lomitapide) capsules for homozygous familial hypercholesterolemia (HoFH). Available at: http://ir.aegerion.com/releasedetail.cfm?ReleaseID=728650.

  4. Stein EA. Other therapies for reducing low-density lipoprotein cholesterol: medications in development. Endocrinol Metab Clin North Am. 2009;38:99–119.

    Article  PubMed  CAS  Google Scholar 

  5. Wetterau JR, Aggerbeck LP, Bouma ME, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science. 1992;258:999–1001.

    Article  PubMed  CAS  Google Scholar 

  6. Burnett JR, Watts GF. MTP inhibition as a treatment for dyslipidaemias; time to deliver or empty promises? Expert Opin Ther Targets. 2007;11:181–9.

    Article  PubMed  CAS  Google Scholar 

  7. Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–56.

    Article  PubMed  CAS  Google Scholar 

  8. Samaha FF, McKenney J, Bloedon LT, et al. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2008;5:497–505.

    Article  PubMed  CAS  Google Scholar 

  9. •• Cuchel M, Meagher EA, du Toit Theron H, et al. Phase 3 HoFH Lomitapide Study investigators. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381:40–6. This single-arm, open-label, phase 3 study added lomitapide to baseline treatment in 29 patients with HoFH, leading to a 50% reduction in LDL cholesterol.

    Article  PubMed  CAS  Google Scholar 

  10. Avigan MI, Ishak KG, Gregg RE, et al. Morphologic features of the liver in abetalipoproteinemia. Hepatology. 1984;4:1223–6.

    Article  PubMed  CAS  Google Scholar 

  11. Goldberg AC. Emerging low-density lipoprotein therapies: Microsomal triglyceride transfer protein inhibitors. J Clin Lipidol. 2013;7(3 Suppl):S16–20.

    Article  PubMed  Google Scholar 

  12. Hussain MM, Nijstad N, Franceschini L. Regulation of microsomal triglyceride transfer protein. Clin Lipidol. 2011;6(3):293–303.

    Article  PubMed  CAS  Google Scholar 

  13. Genzyme and Isis announce FDA approval of KYNAMRO (mipomersen sodium) injection for the treatment of homozygous familial hypercholesterolemia. Press release, genyzme and Isis Pharmaceutical. Available at: http://en.sanofi.com/Images/31810_20130129_KYNAMRO-FDA-APPROVAL_en.pdf.

  14. Toth PP. Emerging LDL therapies: Mipomersen-antisense oligonucleotide therapy in the management of hypercholesterolemia. J Clin Lipidol. 2013;7(3 Suppl):S6–10.

    Article  PubMed  Google Scholar 

  15. Plakogiannis R, Cioce L, Fisher EA, Underberg J. The role of mipomersen therapy in the treatment of familial hypercholesterolemia. Clin Invest. 2012;2(10):1033–7.

    Article  CAS  Google Scholar 

  16. Yu R, Geary RS, Flaim JD, et al. Lack of pharmacokinetic interaction of mipomersen sodium (ISIS 301012), a 20-O-methoxyethyl modified antisense oligonucleotide targeting apolipoprotein B-100 messenger RNA, with simvastatin and ezetimibe. Clin Pharmacokinet. 2009;48:39–50.

    Article  PubMed  CAS  Google Scholar 

  17. Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.

    Article  PubMed  CAS  Google Scholar 

  18. Stein EA, Dufour R, Gagne C, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126(19):2283–92.

    Article  PubMed  CAS  Google Scholar 

  19. •• McGowan MP, Tardif JC, Ceska R, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7(11):e49006. This randomized, double-blinded, placebo-controlled trial showed a 36% decrease in LDL cholesterol in patients treated with mipomersen as compared with placenbo in 58 severely hyperlipidemic patients.

    Article  PubMed  CAS  Google Scholar 

  20. Santos R, Duell B, East C, et al. Long-term safety and efficacy of mipomersen in patients with familial hypercholesterolemia not controlled by maximally tolerated lipid lowering therapy. XVI International Symposium on Atherosclerosis (ISA 2012). March 25–29, 2012, Sydney, Australia. Abstract 790.

  21. Visser ME, Wagener G, Baker BF, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2012;33(9):1142–9.

    Article  PubMed  CAS  Google Scholar 

  22. • Genzyme. A study of the safety and efficacy of two different regimens of mipomersen in patients with familial hypercholesterolemia and inadequately controlled low-density lipoprotein cholesterol (FOCUS-FH). In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 Jul 11]. Available from: http://clinicaltrials.gov/show/NCT01475825 NLM Identifier: NCT01475825. This study aims to determine whether mipomersen can reduce atherogenic lipid levels in patients with severe heterozygous familial hypercholesterolemia.

  23. FDA Briefing Document. NDA 203568: mipomersen sodium injection, 200 mg/mL. Available at: http://www.fda.gov/downloads/ AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM323927.pdf.

  24. Hovingh K, Besseling J, Kastelein J. Efficacy and safety of mipomersen sodium (Kynamro). Expert Opin Drug Saf. 2013;12(4):569–79.

    Article  PubMed  CAS  Google Scholar 

  25. Sjouke B, Balak DM, Beuers U, et al. Is mipomersen ready for clinical implementation? A transatlantic dilemma. Curr Opin Lipidol. 2013;24(4):301–6.

    Article  PubMed  CAS  Google Scholar 

  26. Schaefer EJ. Effects of cholesteryl ester transfer protein inhibitors on human lipoprotein metabolism: why have they failed in lowering coronary heart disease risk? Curr Opin Lipidol. 2013;24(3):259–64.

    Article  PubMed  CAS  Google Scholar 

  27. Stock J. CETP inhibition in perspective. Atherosclerosis. 2012;220(2):325–8.

    Article  PubMed  CAS  Google Scholar 

  28. Fayad ZA, Mani V, Woodward M, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomized trial. Lancet. 2011;378:1547–59.

    Article  PubMed  CAS  Google Scholar 

  29. Lüscher TF, Taddei S, Kaski JC, et al. dal-VESSEL Investigators. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J. 2012;33(7):857–65.

    Article  PubMed  Google Scholar 

  30. •• Schwartz GG, Olsson AG, Abt M, Dal-OUTCOMES Investigators, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99. This study randomized 15,871 patients with a recent coronary event to dalcetrapib versus placebo, but was halted early for futility after an interim analysis revealed no between-group difference for the primary outcome.

    Article  PubMed  CAS  Google Scholar 

  31. Brousseau ME, Schaefer EJ, Wolfe ML, et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med. 2004;350:1505–15.

    Article  PubMed  CAS  Google Scholar 

  32. Barter PJ, Caulfield M, Eriksson M, ILLUMINATE Investigators, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  PubMed  CAS  Google Scholar 

  33. Davidson M, Liu SX, Barter P, et al. Measurement of LDL-C after treatment with the CETP inhibitor anacetrapib. J Lipid Res. 2013;54:467–72.

    Article  PubMed  CAS  Google Scholar 

  34. Cao G, Beyer TP, Zhang Y, et al. Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosterone or increasing blood pressure. J Lipid Res. 2011;52:2169–76.

    Article  PubMed  CAS  Google Scholar 

  35. University of Oxford. REVEAL: Randomized EValuation of the Effects of Anacetrapib Through Lipid-modification. In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 Jul 14]. Available from: http://clinicaltrials.gov/ct2/show/NCT01252953 NLM Identifier: NCT 01252953.

  36. Eli Lilly and Company. A study of evacetrapib in high-risk vascular disease (ACCELERATE). In: ClinicalTrials.gov [internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 Jul 14]. Available from: clinicaltrials.gov/ct2/show/NCT01687998 NLM Identifier: NCT 01687998.

  37. Assmann G, Schulte H, von Eckardstein A, Huang Y. High-density lipoprotein cholesterol as a predictor of coronary heart disease risk: the PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis. 1996;124(Suppl):S11–20.

    Article  PubMed  CAS  Google Scholar 

  38. Inazu A, Brown ML, Hesler CB, et al. Increased high density lipoprotein levels caused by a common cholesteryl-transfer protein gene mutation. N Engl J Med. 1990;323:1234–8.

    Article  PubMed  CAS  Google Scholar 

  39. Hirano K, Yamashita S, Matsuzawa Y. Pros and cons of inhibiting cholesteryl ester transfer protein. Curr Opin Lipidol. 2000;11:589–96.

    Article  PubMed  CAS  Google Scholar 

  40. Brousseau ME, Diffenderfer MR, Millar JS, et al. Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies, apolipoprotein A-I metabolism, and fecal sterol excretion. Arterioscler Thromb Vasc Biol. 2005;25:1057–64.

    Article  PubMed  CAS  Google Scholar 

  41. Clark RW, Ruggieri RB, Cunningham D, Bamberger MJ. Description of the torcetrapib series of cholesteryl ester protein inhibitors, including mechanism of action. J Lipid Res. 2006;47:537–52.

    Article  PubMed  CAS  Google Scholar 

  42. The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA. 1975;231:360–81.

    Article  Google Scholar 

  43. • Villines TC, Stanek EJ, Devine PJ, et al. The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration. J Am Coll Cardiol. 2010;55(24):2721–6. In this study, 315 patients with coronary disease or an equivalent were treated with simvastatin and then randomized to either niacin or ezetimibe. The study was stopped early for superiority of niacin in the primary endpoint, change in mean CIMT.

    Article  PubMed  Google Scholar 

  44. • AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67. This study randomized 3,414 patients already receiving simvastatin and ezetimibe (if needed) to placebo or niacin. The study was stopped early at interim analysis due to futility.

    Article  PubMed  Google Scholar 

  45. Nicholls SJ. The AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) trial: to believe or not to believe? J Am Coll Cardiol. 2012;59(23):2065–7.

    Article  PubMed  Google Scholar 

  46. HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34(17):279–91.

    Article  Google Scholar 

  47. Lai E, De Lepeleire I, Crumley TM, et al. Suppression of niacin-induced vasodilation with an antagonist to prostaglandin D2 receptor subtype 1. Clin Pharmacol Ther. 2007;81:849–57.

    Article  PubMed  CAS  Google Scholar 

  48. •• Armitage J on behalf of the HPS2-THRIVE Collaborative Group. HPS2-THRIVE: Randomized placebo-controlled trial of ER niacin and laropiprant in 25,673 patients with pre-existing cardiovascular disease. Powerpoint presented at: American College of Cardiology Scientific Sessions; 2013 Mar 9–11; San Francisco, CA. Available at: www.thrivestudy.org/hps2-thrive_ACC_slides.ppt. In this study, 25,673 patients with atherosclerosis who were already on simvastatin and ezetimibe (if needed) were randomized to receive placebo or niacin/laropiprant combination. The study failed to show improvement in clinical outcomes with niacin/laropiprant but did show an increased incidence of adverse drug reactions.

  49. European Medicines Agency. European Medicines Agency confirms recommendation to suspend Tredaptive, Pelzont and Trevaclyn. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2013/01/WC500137453.pdf.

  50. Qian YW, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007;48:1488–98.

    Article  PubMed  CAS  Google Scholar 

  51. Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.

    Article  PubMed  CAS  Google Scholar 

  52. Cohen JC, Boerwinkle E, Mosley Jr TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  PubMed  CAS  Google Scholar 

  53. Cohen JC. Emerging LDL therapies: Using human genetics to discover new therapeutic targets for plasma lipids. J Clin Lipidol. 2013;7(3 Suppl):S1–5.

    Article  PubMed  Google Scholar 

  54. Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366:1108–18.

    Article  PubMed  CAS  Google Scholar 

  55. McKenney JM, Koren MJ, Kereiakes DJ, et al. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59:2344–53.

    Article  PubMed  CAS  Google Scholar 

  56. Dubuc C, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24:1454–9.

    Article  PubMed  CAS  Google Scholar 

  57. •• Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367:1891–900. In this phase 2 study, 92 patients were randomized to receive atorvastatin 80mg plus a PCKS9 inhibitor, atorvastatin 80mg plus placebo, or atorvastatin 10mg plus a PCKS9 inhibitor. A significant reduction in LDL cholesterol was seen in both PCKS9 groups over the atorvastatin only group.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Matthew Vorsanger and James A. Underberg declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Underberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorsanger, M., Underberg, J.A. New Treatment Approaches for Dyslipidemia and its Management. Curr Cardiovasc Risk Rep 7, 395–400 (2013). https://doi.org/10.1007/s12170-013-0333-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-013-0333-x

Keywords

Navigation