Skip to main content
Log in

Lipoprotein-associated phospholipase A2: Risk marker or target of therapy?

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been associated with cardiovascular disease risk in epidemiologic studies, but whether Lp-PLA2 is a risk marker or a risk factor is unknown. Identification of individuals with elevated Lp-PLA2 may improve assessment for cardiovascular disease risk. Statin therapy has been shown to reduce Lp-PLA2, which circulates primarily bound to low-density lipoprotein, and selective inhibitors of Lp-PLA2 are under development. Additional research is needed to determine the role of Lp-PLA2 in atherogenesis and atherothrombotic events and whether Lp-PLA2 may provide an additional target of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  2. Ballantyne CM, Nambi V: Markers of inflammation and their clinical significance. Atheroscler Suppl 2005, 6:21–29.

    Article  PubMed  CAS  Google Scholar 

  3. Pearson TA, Mensah GA, Alexander RW, et al.: Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107:499–511.

    Article  PubMed  Google Scholar 

  4. Ridker PM, Wilson PW, Grundy SM: Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation 2004, 109:2818–2825.

    Article  PubMed  CAS  Google Scholar 

  5. Stafforini DM, McIntyre TM, Carter ME, Prescott SM: Human plasma platelet-activating factor acetylhydrolase. Association with lipoprotein particles and role in the degradation of platelet-activating factor. J Biol Chem 1987, 262:4215–4222.

    PubMed  CAS  Google Scholar 

  6. Caslake MJ, Packard CJ: Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase) and cardiovascular disease. Curr Opin Lipidol 2003, 14:347–352.

    Article  PubMed  CAS  Google Scholar 

  7. Tselepis AD, Dentan C, Karabina SA, et al.: PAF-degrading acetylhydrolase is preferentially associated with dense LDL and VHDL-1 in human plasma. Catalytic characteristics and relation to the monocyte-derived enzyme. Arterioscler Thromb Vasc Biol 1995, 15:1764–1773.

    PubMed  CAS  Google Scholar 

  8. Benitez S, Sanchez-Quesada JL, Ribas V, et al.: Platelet-activating factor acetylhydrolase is mainly associated with electronegative low-density lipoprotein subfraction. Circulation 2003, 108:92–96.

    Article  PubMed  CAS  Google Scholar 

  9. Gaubatz JW, Gillard BK, Massey JB, et al.: Dynamics of dense electronegative low density lipoproteins and their preferential association of lipoprotein phospholipase A2. J Lipid Res 2006, Epub ahead of print.

  10. Elstad MR, Stafforini DM, McIntyre TM, et al.: Platelet-activating factor acetylhydrolase increases during macrophage differentiation. A novel mechanism that regulates accumulation of platelet-activating factor. J Biol Chem 1989, 264:8467–8470.

    PubMed  CAS  Google Scholar 

  11. Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM: Platelet-activating factor acetylhydrolases. J Biol Chem 1997, 272:17895–17898.

    Article  PubMed  CAS  Google Scholar 

  12. Quinn MT, Parthasarathy S, Steinberg D: Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 1988, 85:2805–2809.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu Y, Lin JH, Liao HL, et al.: Activation of ICAM-1 promoter by lysophosphatidylcholine: possible involvement of protein tyrosine kinases. Biochim Biophys Acta 1997, 1345:93–98.

    PubMed  CAS  Google Scholar 

  14. Takahara N, Kashiwagi A, Maegawa H, Shigeta Y: Lysophosphatidylcholine stimulates the expression and production of MCP-1 by human vascular endothelial cells. Metabolism 1996, 45:559–564.

    Article  PubMed  CAS  Google Scholar 

  15. Folsom AR, Chambless LE, Ballantyne CM, et al.: An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: the atherosclerosis risk in communities study. Arch Intern Med 2006, 166:1368–1373.

    Article  PubMed  CAS  Google Scholar 

  16. Oei HH, van der Meer IM, Hofman A, et al.: Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam Study. Circulation 2005, 111:570–575.

    Article  PubMed  CAS  Google Scholar 

  17. Koenig W, Khuseyinova N, Lowel H, et al.: Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany. Circulation 2004, 110:1903–1908.

    Article  PubMed  CAS  Google Scholar 

  18. Gerber Y, McConnell JP, Jaffe AS, et al.: Lipoprotein-associated phospholipase A2 and prognosis after myocardial infarction in the community. Arterioscler Thromb Vasc Biol 2006, 26:2517–2522.

    Article  PubMed  CAS  Google Scholar 

  19. Blake GJ, Dada N, Fox JC, et al.: A prospective evaluation of lipoprotein-associated phospholipase A(2) levels and the risk of future cardiovascular events in women. J Am Coll Cardiol 2001, 38:1302–1306.

    Article  PubMed  CAS  Google Scholar 

  20. Packard CJ, O’Reilly DS, Caslake MJ, et al.: Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 2000, 343:1148–1155.

    Article  PubMed  CAS  Google Scholar 

  21. O’Donoghue M, Morrow DA, Sabatine MS, et al.: Lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndromes in the PROVE IT-TIMI 22 (PRavastatin Or atorVastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction) trial. Circulation 2006, 113:1745–1752.

    Article  PubMed  CAS  Google Scholar 

  22. Brilakis ES, McConnell JP, Lennon RJ, et al.: Association of lipoprotein-associated phospholipase A2 levels with coronary artery disease risk factors, angiographic coronary artery disease, and major adverse events at follow-up. Eur Heart J 2005, 26:137–144.

    Article  PubMed  CAS  Google Scholar 

  23. Khuseyinova N, Imhof A, Rothenbacher D, et al.: Association between Lp-PLA2 and coronary artery disease: focus on its relationship with lipoproteins and markers of inflammation and hemostasis. Atherosclerosis 2005, 182:181–188.

    PubMed  CAS  Google Scholar 

  24. May HT, Horne BD, Anderson JL, et al.: Lipoprotein-associated phospholipase A2 independently predicts the angiographic diagnosis of coronary artery disease and coronary death. Am Heart J 2006, 152:997–1003.

    Article  PubMed  CAS  Google Scholar 

  25. Iribarren C, Gross MD, Darbinian JA, et al.: Association of lipoprotein-associated phospholipase A2 mass and activity with calcified coronary plaque in young adults: the CARDIA study. Arterioscler Thromb Vasc Biol 2005, 25:216–221.

    PubMed  CAS  Google Scholar 

  26. Yang EH, McConnell JP, Lennon RJ, et al.: Lipoprotein-associated phospholipase A2 is an independent marker for coronary endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol 2006, 26:106–111.

    Article  PubMed  CAS  Google Scholar 

  27. Kolodgie FD, Burke AP, Skorija KS, et al.: Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2006, 26:2523–2529.

    Article  PubMed  CAS  Google Scholar 

  28. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Chambless LE, Myerson M, Wu KK, Sharrett AR, Boerwinkle E: Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Arch Intern Med 2005, 165:2479–2484.

    Article  PubMed  CAS  Google Scholar 

  29. Elkind MS, Tai W, Coates K, et al.: High-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2, and outcome after ischemic stroke. Arch Intern Med 2006, 166:2073–2080.

    Article  PubMed  CAS  Google Scholar 

  30. Kiortsis DN, Tsouli S, Lourida ES, et al.: Lack of association between carotid intima-media thickness and PAF-acetylhydrolase mass and activity in patients with primary hyperlipidemia. Angiology 2005, 56:451–458.

    Article  PubMed  Google Scholar 

  31. Campo S, Sardo MA, Bitto A, et al.: Platelet-activating factor acetylhydrolase is not associated with carotid intima-media thickness in hypercholesterolemic Sicilian individuals. Clin Chem 2004, 50:2077–2082.

    Article  PubMed  CAS  Google Scholar 

  32. Kardys I, Oei HH, van der Meer IM, et al.: Lipoprotein-associated phospholipase A2 and measures of extracoronary atherosclerosis: the Rotterdam Study. Arterioscler Thromb Vasc Biol 2006, 26:631–636.

    Article  PubMed  CAS  Google Scholar 

  33. Santos S, Rooke TW, Bailey KR, et al.: Relation of markers of inflammation (C-reactive protein, white blood cell count, and lipoprotein-associated phospholipase A2) to the ankle-brachial index. Vasc Med 2004, 9:171–176.

    Article  PubMed  Google Scholar 

  34. Albert MA, Glynn RJ, Wolfert RL, Ridker PM: The effect of statin therapy on lipoprotein associated phospholipase A2 levels. Atherosclerosis 2005, 182:193–198.

    Article  PubMed  CAS  Google Scholar 

  35. Winkler K, Abletshauser C, Friedrich I, et al.: Fluvastatin slow-release lowers platelet-activating factor acetyl hydrolase activity: a placebo-controlled trial in patients with type 2 diabetes. J Clin Endocrinol Metab 2004, 89:1153–1159.

    Article  PubMed  CAS  Google Scholar 

  36. Tsimihodimos V, Kakafika A, Tambaki AP, et al.: Fenofibrate induces HDL-associated PAF-AH but attenuates enzyme activity associated with apoB-containing lipoproteins. J Lipid Res 2003, 44:927–934.

    Article  PubMed  CAS  Google Scholar 

  37. Muhlestein JB, May HT, Jensen JR, et al.: The reduction of inflammatory biomarkers by statin, fibrate, and combination therapy among diabetic patients with mixed dyslipidemia: the DIACOR (Diabetes and Combined Lipid Therapy Regimen) study. J Am Coll Cardiol 2006, 48:396–401.

    Article  PubMed  CAS  Google Scholar 

  38. Kuvin JT, Dave DM, Sliney KA, et al.: Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am J Cardiol 2006, 98:743–745.

    Article  PubMed  CAS  Google Scholar 

  39. Caslake MJ, Packard CJ: Lipoprotein-associated phospholipase A2 as a biomarker for coronary disease and stroke. Nat Clin Pract Cardiovasc Med 2005, 2:529–535.

    Article  PubMed  CAS  Google Scholar 

  40. Leach CA, Hickey DM, Ife RJ, et al.: Lipoprotein-associated PLA2 inhibition—a novel, non-lipid lowering strategy for atherosclerosis therapy. Farmaco 2001, 56:45–50.

    Article  PubMed  CAS  Google Scholar 

  41. Macphee CH, Moores KE, Boyd HF, et al.: Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 1999, 338(Pt 2):479–487.

    Article  PubMed  CAS  Google Scholar 

  42. Carpenter KL, Dennis IF, Challis IR, et al.: Inhibition of lipoprotein-associated phospholipase A2 diminishes the death-inducing effects of oxidised LDL on human monocyte-macrophages. FEBS Lett 2001, 505:357–363.

    Article  PubMed  CAS  Google Scholar 

  43. Benson GM, Grimsditch D, Milliner K, et al.: Anti-atherosclerotic effect of SB-244323, a lipoprotein associated phospholipase A2 inhibitor, in WHHL rabbits [abstract]. Atherosclerosis 2000, 151:166.

    Article  Google Scholar 

  44. Rotella DP: SB-480848. GlaxoSmithKline. Curr Opin Investig Drugs 2004, 5:348–351.

    PubMed  CAS  Google Scholar 

  45. Blackie JA, Bloomer JC, Brown MJ, et al.: The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. Bioorg Med Chem Lett 2003, 13:1067–1070.

    Article  PubMed  CAS  Google Scholar 

  46. Macphee CH, Nelson J, Zalewski A: Role of lipoprotein-associated phospholipase A2 in atherosclerosis and its potential as a therapeutic target. Curr Opin Pharmacol 2006, 6:154–161.

    Article  PubMed  CAS  Google Scholar 

  47. Johnson A, Zalewski A, Janmohamed S, Sawyer J, Rolfe T, Staszkiewicz W, Alvarez Sabin J: Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, an emerging CV risk marker, can be inhibited in atherosclerotic lesions and plasma by novel pharmacologic intervention: the results of a multicenter clinical study. Circulation 2004, 110:III–590.

    Google Scholar 

  48. SB-480848 in subjects with coronary heart disease. http://www.clinicaltrials.gov/ct/show/NCT00269048. Accessed November 20, 2006.

  49. Lp-PLA2 Studies Collaboration: Collaborative meta-analysis of individual participant data from observational studies of Lp-PLA2 and cardiovascular disease. Eur J Cardiovasc Prev Rehabil, In press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christie M. Ballantyne MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballantyne, C.M. Lipoprotein-associated phospholipase A2: Risk marker or target of therapy?. Curr Cardio Risk Rep 1, 66–71 (2007). https://doi.org/10.1007/s12170-007-0011-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-007-0011-y

Keywords

Navigation