Skip to main content
Log in

Polycyclic Aromatic Hydrocarbons (PAHs) in Olive Pomace Oil: Occurrence, Analytical Determination, and Mitigation Strategies

  • Research
  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Environmental pollution, agricultural practices, climate change, and the various stages of edible oil production are responsible for oil contamination with various chemicals. Among vegetable fats, olive pomace oils (OPOs) have higher polycyclic aromatic hydrocarbon (PAH) contents, exceeding the limits in some cases. Several methods for the determination of PAHs in animal and vegetable fats and oils have been published over the years, but they have often failed to eliminate matrix-specific interferences in OPO. The few methods proposed or applied for the specific analysis of PAHs in OPO over the past 20 years are mainly based on two different analytical approaches, namely liquid chromatography-fluorescence detector (LC-FLD) and gas chromatography-mass spectrometry (GC–MS). In the case of the LC-FLD approaches, liquid–liquid extraction with appropriate solvents and one or more purification steps on stationary phases of different compositions are performed. In the case of GC techniques, on the other hand, the most commonly used sample preparation is liquid–liquid partitioning. Due to widespread public concern about PAH contamination, several studies have been conducted to explore ways to mitigate the presence of PAHs in OPOs (i.e., refining processes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:

Anthracene

ACN:

Acetonitrile

BaA:

Benzo[a]anthracene

BaP:

Benzo[a]pyrene

BbF:

Benzo[b]fluoranthene

BeP:

Benzo[e]pyrene

BghiP:

Benzo[g,h,i]perylene

BkF:

Benzo[k]fluoranthene

Ch:

Chrysene

CyHex:

Cyclohexane

DCM:

Dichloromethane

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

EEC:

European Economic Community

EFSA :

European Food Safety Authority

EPA:

Environmental Protection Agency

EU :

European Union

EVOO :

Extra virgin olive oil

Ft:

Fluoranthene

FLD :

Fluorometric detector

FS:

Full scan

GC:

Gas chromatography

GC × GC :

Comprehensive gas chromatography

GPC:

Gel permeation chromatography

Hex:

Hexane

HPLC:

High-performance liquid chromatography

IPA:

Isopropyl alcohol

JECFA:

Joint Food and Agriculture Organization and World Health Organization Expert Committee on Food Additives

LC :

Liquid chromatography

LLE:

Liquid-liquid extraction

LOD:

Limit of detection

LOQ:

Limit of quantification

MCPD:

Monochloropropanediol

MeOH:

Methanol

MOSH:

Mineral oil saturated hydrocarbons

MOAH:

Mineral oil aromatic hydrocarbons

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

OPO:

Olive pomace oil

Pyr:

Pyrene

Phe:

Phenanthrene

PAH4:

Benzo[a]pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene

PAH8:

Benzo[a]pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, dibenzo[a,h]anthracene, indeno[1,2,3-cd] pyrene

PAHs:

Polycyclic aromatic hydrocarbons

PS-DVB:

Polystyrene divinylbenzene

RP:

Reversed-phase

RSD:

Relative standard deviation

SCF:

Scientific Committee on Food

SEC :

Size exclusion chromatography

SIM:

Single ion monitoring

SPE:

Solid phase extraction

SPME:

Solid phase microextraction

TLC:

Thin-layer chromatography

US:

United States

References

  • Abdulkadar AHW, Kunhi AAM, Jassim A-J, Abdulla A-A (2003) Determination of benzo(a)pyrene by GC/MS/MS in retail olive oil samples available in Qatar. Food Addit Contam 20(12):1164–1169. https://doi.org/10.1080/02652030310001625626

    Article  CAS  PubMed  Google Scholar 

  • Adeyeye SAO (2020) Polycyclic aromatic hydrocarbons in foods: aA critical review. Curr Nutr Food Sci 16(6):866–873. https://doi.org/10.2174/1573401315666190215112216

    Article  Google Scholar 

  • Akpambang VOE, Purcaro G, Lajide L, Amoo IA, Conte LS, Moret S (2009) Determination of polycyclic aromatic hydrocarbons (PAHs) in commonly consumed Nigerian smoked/grilled fish and meat. Food Additives and Contaminants - Part A 26(7):1096–1103. https://doi.org/10.1080/02652030902855406

    Article  CAS  Google Scholar 

  • Alba Mendoza J, Hidalgo Casado F, Ruiz Gomez A, Martinez Roman F, Moyano Pérez MJ, Cert Ventula A, Pérez Camino MC, Ruiz Mendez MV (1996) Caracteristics of the olive oil obtained with the first and second centrifugation. Grasas Aceites 47(3):163–181

    Article  CAS  Google Scholar 

  • Almoselhy RIM (2021) A rReview on hHealth rRisks from pProcessing cContaminants in eEdible oOils and fFoodstuffs. Int J Adv Technol Sci Res 02(03):143–161

    Google Scholar 

  • Amador-Muñoz O, Villalobos-Pietrini R, Aragón-Piña A, Tran TC, Morrison P, Marriott PJ (2008) Quantification of polycyclic aromatic hydrocarbons based on comprehensive two-dimensional gas chromatography-isotope dilution mass spectrometry. J Chromatogr A 1201(2):161–168. https://doi.org/10.1016/j.chroma.2008.06.028

    Article  CAS  PubMed  Google Scholar 

  • Antonopoulos K, Valet N, Spiratos D, Siragakis G (2006) Olive oil and pomace olive oil processing. Grasas Aceites 57(1):56–67

    CAS  Google Scholar 

  • Arjona R, Ollero P, Vidal BF (2005) Automation of an olive waste industrial rotary dryer. J Food Eng 68(2):239–247. https://doi.org/10.1016/j.jfoodeng.2004.05.049

    Article  Google Scholar 

  • Ballesteros E, García Sánchez A, Ramos Martos N (2006) Simultaneous multidetermination of residues of pesticides and polycyclic aromatic hydrocarbons in olive and olive-pomace oils by gas chromatography/ tandem mass spectrometry. J Chromatogr A 1111(1):89–96. https://doi.org/10.1016/j.chroma.2006.01.101

    Article  CAS  PubMed  Google Scholar 

  • Barp L, Moret S, Purcaro G (2022) Monitoring and occurrence of heavy PAHs in pomace oil supply chain using a double-step solid-phase purification and HPLC-FLD determination. Foods 11(18):2737. https://doi.org/10.3390/foods11182737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglini E, Miralles P, Lotti N, Soccio M, Fiorino M, Coscolla C (2024) Analysis of microplastics in commercial vegetable edible oils from Italy and Spain. Food Chem 443:138567. https://doi.org/10.1016/j.foodchem.2024.138567

    Article  CAS  PubMed  Google Scholar 

  • Bertoz V, Purcaro G, Conchione C, Moret S (2021) A review on the occurrence and analytical determination of PAHs in olive oils. Foods 10(2):324. https://doi.org/10.3390/foods10020324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CEN—European Committee for Standardization (2014) Food analysis-determination of benzo[a]pyrene, benz[a]anthracene, chrysene and benzo[b]fluoranthene in foodstuffs by high performance liquid chromatography with fluorescence detection (HPLC-FD); CEN/TS 16621:2014; CEN: Brussels, Belgium

  • CEN—European Committee for Standardization (2015) Food analysis-determination of benzo[a]pyrene, benz[a]anthracene, chrysene and benzo[b]fluoranthene in foodstuffs by gas chromatography mass spectrometry (GC-MS); EN 16619:2015; CEN: Brussels, Belgium

  • Chanioti S, Tzia C (2017) Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: oOil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT Food Sci Technol 79:178–189. https://doi.org/10.1016/j.lwt.2017.01.029

    Article  CAS  Google Scholar 

  • Chanioti S, Tzia C (2019) Evaluation of ultrasound assisted and conventional methods for production of olive pomace oil enriched in sterols and squalene. LWT Food Sci Technol 99:209–216. https://doi.org/10.1016/j.lwt.2018.09.068

    Article  CAS  Google Scholar 

  • Ciecierska M, Obiedziński MW (2013) Polycyclic aromatic hydrocarbons in vegetable oils from unconventional sources. Food Control 30(2):556–562. https://doi.org/10.1016/j.foodcont.2012.07.046

    Article  CAS  Google Scholar 

  • Cortesi, N, Fusari, P. (2005) Development in the determination pf polycyclic aromatic hydrocarbons in vegetable oils. Rivista Italiana Delle Sostanze Grasse, LXXXII, 167–172

  • Datta AK, Ni H (2002) Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. J Food Eng 51:355–364

    Article  Google Scholar 

  • Diletti G, Scortichini G, Scarpone R, Gatti G, Torreti L, Migliorati G (2005) Isotope dilution determination of polycyclic aromatic hydrocarbons in olive pomace oil by gas chromatography-mass spectrometry. J Chromatogr A 1062(2):247–254. https://doi.org/10.1016/j.chroma.2004.11.019

    Article  CAS  PubMed  Google Scholar 

  • Drabova L, Tomaniova M, Kalachova K, Kocourek V, Hajslova J, Pulkrabova J (2013) Application of solid phase extraction and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry for fast analysis of polycyclic aromatic hydrocarbons in vegetable oils. Food Control 33(2):489–497. https://doi.org/10.1016/j.foodcont.2013.03.018

    Article  CAS  Google Scholar 

  • Ekner H, Dreij K, Sadiktsis I (2022) Determination of polycyclic aromatic hydrocarbons in commercial olive oils by HPLC/GC/MS – oOccurrence, composition and sources. Food Control 132:108528. https://doi.org/10.1016/j.foodcont.2021.108528

    Article  CAS  Google Scholar 

  • European Commission (EC) (2005) Regulation (EC) n° 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. In Official J Eur Union L70 1–16

  • European Commission (EC) (2011a) Commission Regulation (EU) n° 835/2011 of 19 August 2011 amending Regulation (EC) n° 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. In Official J Eur Union L215 4–8. http://ec.europa.eu/food/fs/sc/scf/out153_en.pdf

  • European Commission (EC) (2011b) Commission Regulation (EU) n° 836/2011 of 19 August 2011 amending Regulation (EC) n° 333/2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs. Off J Eur Union L215 9–16

    Google Scholar 

  • European Commission (2022) Standing committee on plants, animals, food and feed section novel food and toxicological safety of the food chain (SCoPAFF). Summary Report sante g 3:8681453

  • European Commission (EC) (2023) Regulation (EU) n° 915/2023 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) n° 1881/2006. Off J Eur Union L119, 103–157

    Google Scholar 

  • European Food Safety Authority (EFSA) (2008) Polycyclic aromatic hydrocarbons in food - Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA J 724(8):1–114. https://doi.org/10.2903/j.efsa.2008.724

    Article  Google Scholar 

  • European Food Safety Authority (EFSA) (2023) Update of the risk assessment of mineral oil hydrocarbons (MOH) in food. EFSA J, 1–150

  • Ergönül PG, Sánchez S (2013) Evaluation of polycyclic aromatic hydrocarbons content in different types of olive and olive pomace oils produced in Turkey and Spain. Eur J Lipid Sci Technol 115(9):1078–1084. https://doi.org/10.1002/ejlt.201200398

    Article  CAS  Google Scholar 

  • Gharbi I, Moret S, Chaari O, Issaoui M, Conte LS, Lucci P, Hammami M (2017) Evaluation of hydrocarbon contaminants in olives and virgin olive oils from Tunisia. Food Control 75:160–166. https://doi.org/10.1016/j.foodcont.2016.12.003

    Article  CAS  Google Scholar 

  • Gharby S (2022) Refining vegetable oils: chemical and physical refining. Scientific World Journal 2022:6627013. https://doi.org/10.1155/2022/6627013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Göǧüş F, Maskan M (2006) Air drying characteristics of solid waste (pomace) of olive oil processing. J Food Eng 72(4):378–382. https://doi.org/10.1016/j.jfoodeng.2004.12.018

    Article  Google Scholar 

  • Göker G, Kıralan S, Tekin A, Erdoğdu F (2021) Formation kinetics of polycyclic aromatic hydrocarbons (PAHs) during drying process of olive pomace. Food Chem 345:128856. https://doi.org/10.1016/j.foodchem.2020.128856

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Coca RB, del Pérez-Camino MC, Moreda W (2023) The mMineral oOil hHydrocarbon pParadox in oOlive pPomace oOils. Foods 12(3):434. https://doi.org/10.3390/foods12030434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Alef K, Wilke BM, Li P (2007) Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J Hazard Mater 143(1–2):372–378. https://doi.org/10.1016/j.jhazmat.2006.09.037

    Article  CAS  PubMed  Google Scholar 

  • Grimmer, G, Bohnke, H (1975) Polycyclic aromatic hydrocarbon profile analysis of high-protein foods, oils, and fats by gas chromatography. Journal of the AOAC, 58(4), 725–733. https://academic.oup.com/jaoac/article-abstract/58/4/725/5711182

  • Guillén MD, Sopelana P, Palencia G (2004) Polycyclic aromatic hydrocarbons and olive pomace oil. J Agric Food Chem 52(7):2123–2132. https://doi.org/10.1021/jf035259q

    Article  CAS  PubMed  Google Scholar 

  • International Organization for Standardization (ISO) (1998) Animal and vegetable fats and oils-determination of benzo[a]pyrene content- reverse-phase high-performance liquid chromatography method; Geneva, Switzerland

  • International Organization for Standardization (ISO) (2017) Animal and vegetable fats and oils-determination of benzo[a]pyrene-reverse- phase high performance liquid chromatography method; Geneva, Switzerland

  • International Organization for Standardization (ISO) (2016) Animal and vegetable fats and oils-determination of polycyclic aromatic hydrocarbons; Geneva, Switzerland

  • International Organization for Standardization (ISO) (2009) Animal and vegetable fats and oils-determination of polycyclic aromatic hydrocarbons by on-line donor-acceptor complex chromatography and HPLC with fluorescence detection; Geneva, Switzerland

  • Kipopoulou AM, Manoli E, Samara C (1999) Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut 106:369–380

    Article  CAS  PubMed  Google Scholar 

  • Kiralan SS, Erdogdu F, Tekin A (2017) Reducing polycyclic aromatic hydrocarbons (PAHs) formation in olive pomace oil using microwave pre-heating of olive pomace. Eur J Lipid Sci Technol 119(1):1600241. https://doi.org/10.1002/ejlt.201600241

    Article  CAS  Google Scholar 

  • Kiralan SS, Toptancı İ, Tekin A (2019) Further evidence on the removal of polycyclic aromatic hydrocarbons (PAHs) during refining of olive pomace oil. Eur J Lipid Sci Technol 121(4):1800381. https://doi.org/10.1002/ejlt.201800381

    Article  CAS  Google Scholar 

  • Kıralan SS, Toptancı İ, Öncül Abacıgil T, Ramadan MF (2020) Phthalates levels in olive oils and olive pomace oils marketed in Turkey. Food Additives Contaminants - Part A 37(8):1332–1338. https://doi.org/10.1080/19440049.2020.1766120

    Article  CAS  Google Scholar 

  • León-Camacho M, Viera-Alcaide I, Ruiz-Méndez MV (2003) Elimination of polycyclic aromatic hydrocarbons by bleaching of olive. Eur J Lipids Sci Technol 105:9–16

    Article  Google Scholar 

  • Ma Y, Shi L, Liu Y, Lu Q (2017) Effects of neutralization, decoloration, and deodorization on polycyclic aromatic hydrocarbons during laboratory-scale oil refining process. J Chem 2017:7824761. https://doi.org/10.1155/2017/7824761

    Article  CAS  Google Scholar 

  • Martinez-López, S, Morales-Noé, A, Pastor-Garcia, A, Morales-Rubio, A, De La Guardia, M (2005) Sample preparation improvement in polycyclic aromatic hydrocarbons determination in olive oils by gel permeation chromatography and liquid chromatography with fluorescence detection. Journal of AOAC International, 88(4), 1247–1254. https://academic.oup.com/jaoac/article/88/4/1247/5657501

  • Menegoz Ursol L, Conchione C, Peroni D, Carretta A, Moret S (2023) A study on the impact of harvesting operations on the mineral oil contamination of olive oils. Food Chem 406:135032. https://doi.org/10.1016/j.foodchem.2022.135032

    Article  CAS  PubMed  Google Scholar 

  • Moreda W, Rodríguez-Acuña R, Pérez-Camino MDC, Cert A (2004) Determination of high molecular mass polycyclic aromatic hydrocarbons in refined olive pomace and other vegetable oils. J Sci Food Agric 84:1759–1764. https://doi.org/10.1002/jsfa.1877

    Article  CAS  Google Scholar 

  • Moret S, Conte LS (2002) A rapid method for polycyclic aromatic hydrocarbon determination in vegetable oils. J Sep Sci 25:1–6

    Article  Google Scholar 

  • Moret S, Grob K, Conte LS (1996a) On-line high-performance liquid chromatography-solvent evaporation-high-performance liquid chromatography-capillary gas chromatography-flame ionisation detection for the analysis of mineral oil polyaromatic hydrocarbons in fatty foods. J Chromatogr A 750:361–368

    Article  CAS  PubMed  Google Scholar 

  • Moret S, Grob K, Conte LS (1996b) On-line solvent evaporator for coupled LC systems: further developments. J High Resolut Chromatogr 19:434–438

    Article  CAS  Google Scholar 

  • Moret S, Purcaro G, Conte LS (2010) Polycyclic aromatic hydrocarbons (PAHs) levels in propolis and propolis-based dietary supplements from the Italian market. Food Chem 122(1):333–338. https://doi.org/10.1016/j.foodchem.2010.02.041

    Article  CAS  Google Scholar 

  • Peña F, Cárdenas S, Gallego M, Valcárcel M (2003) Direct sampling of orujo oil for determining residual hexane by using a ChemSensor. J Am Oil Chemists’ Soc 80:613–618

    Article  Google Scholar 

  • Perona, JS, Cabello-Moruno, R, Ruiz-Gutiérrez, V (2010) Pomace olive oil and endothelial function. In Olives and olive oil in health and disease prevention (pp. 829–834). Elsevier Inc https://doi.org/10.1016/B978-0-12-374420-3.00088-7

  • Purcaro G, Morrison P, Moret S, Conte LS, Marriott PJ (2007) Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction-comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A 1161(1–2):284–291. https://doi.org/10.1016/j.chroma.2007.05.105

    Article  CAS  PubMed  Google Scholar 

  • Purcaro G, Barp L, Moret S (2016) Determination of hydrocarbon contamination in foods. A Rev Anal Methods 8:5755–5772. https://doi.org/10.1039/c6ay00655h

    Article  CAS  Google Scholar 

  • Rascón AJ, Azzouz A, Ballesteros E (2018) Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction–solid-phase extraction–gas chromatography–mass spectrometry. Food Control 94:268–275. https://doi.org/10.1016/j.foodcont.2018.07.015

    Article  CAS  Google Scholar 

  • Razak NAA, Hanafi MHM, Razak NH, Ibrahim A, Omar AA (2021) The effective polycyclic aromatic hydrocarbons removal from waste cooking oils: the best evidence review. Chem Eng Trans 89:475–480. https://doi.org/10.3303/CET2189080

    Article  Google Scholar 

  • Regulation (EEC) n° 2568/1991 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. In Official J Eur Commun L248 1–83

  • Regulation (EC) n° 1019/2002 of 13 June 2002 on marketing standards for olive oil. In Official J Eur Commun L155 27–31

  • Regulation (EC) n° 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food. Off J Eur Union L338 4–17

    Google Scholar 

  • Regulation (EU) n° 2055/2023 of 25 September 2023 amending Annex XVII to regulation (EC) No 1907/2006 of the european parliament and of the council concerning the registration, evaluation, authorisation and restriction of chemicals (REACH) as regards synthetic polymer microparticles. In Official J Eur Commun L238 67–88

  • Rodríguez-Acuña R, del Pérez-Camino MC, Cert A, Moreda W (2008) Sources of contamination by polycyclic aromatic hydrocarbons in Spanish virgin olive oils. Food Additives Contaminants: Part A 25(1):115–122. https://doi.org/10.1080/02652030701459855

    Article  CAS  Google Scholar 

  • Rojo Camargo MC, Antoniolli PR, Vicente E (2012) Evaluation of polycyclic aromatic hydrocarbons content in different stages of soybean oils processing. Food Chem 135(3):937–942. https://doi.org/10.1016/j.foodchem.2012.06.031

    Article  CAS  PubMed  Google Scholar 

  • Sánchez Moral P, Ruiz Méndez MV (2006) Production of pomace olive oil. Grasas Aceites 57(1):47–55. https://doi.org/10.3989/gya.2006.v57.i1.21

    Article  Google Scholar 

  • Sánchez-Arévalo CM, Olmo-García L, Fernández-Sánchez JF, Carrasco-Pancorbo A (2020) Polycyclic aromatic hydrocarbons in edible oils: aAn overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Comprehensive Rev Food Sci Food Safety 19(6):3528–3573. https://doi.org/10.1111/1541-4337.12637

    Article  CAS  Google Scholar 

  • Schmidt L, Prestes OD, Augusti PR, Fonseca Moreira JC (2023) Phenolic compounds and contaminants in olive oil and pomace – aA narrative review of their biological and toxic effects. Food Biosci 53:102626. https://doi.org/10.1016/j.fbio.2023.102626

    Article  CAS  Google Scholar 

  • Scientific Committee on Food (SCF) (2002) Opinion of the Scientific Committee on Food on the risks to human health of polycyclic aromatic hydrocarbons in food; SCF/CS/CNTM/PAH/29 ADD1 Final. http://europa.eu.int/comm/food/fs/sc/scf/index_en.html

  • Skoczyńska E, de Boer J (2019) Retention behaviour of alkylated and non-alkylated polycyclic aromatic hydrocarbons on different types of stationary phases in gas chromatography. Separations 6(1):7. https://doi.org/10.3390/separations6010007

    Article  CAS  Google Scholar 

  • Taghvaee Z, Piravivanak Z, Rezaee K, Faraji M, Nanvazadeh S (2015) The potential of low temperature extraction method for analysis of polycyclic aromatic hydrocarbons in refined olive and refined pomace olive oils by HPLC/FLD. Nutrition Food Sci Res 2(3):47–54

    CAS  Google Scholar 

  • Taghvaee Z, Piravivanak Z, Rezaei K, Faraji M (2016) Determination of polycyclic aromatic hydrocarbons (PAHs) in olive and refined pomace olive oils with modified low temperature and ultrasound-assisted liquid–liquid extraction method followed by the HPLC/FLD. Food Anal Methods 9(5):1220–1227. https://doi.org/10.1007/s12161-015-0297-1

    Article  Google Scholar 

  • Teixeira VH, Casal S, Oliveira MBPP (2007) PAHs content in sunflower, soybean and virgin olive oils: eEvaluation in commercial samples and during refining process. Food Chem 104(1):106–112. https://doi.org/10.1016/j.foodchem.2006.11.007

    Article  CAS  Google Scholar 

  • Tran, T, Amador-Munoz, O, Purcaro, G, Marriott, PJ (2007) Gas chromatography analysis of polyaromatic hydrocarbons, in: Anyakora C. (Ed.), Environmental impact of polynuclear aromatic hydrocarbons. Research Signpost, Kerala, India, pp.331–378

  • Van Thanh N, Thi Anh P, Thuy Ngoc N, Thi Kim T, Thi Quynh N, Hong Anh D, Hung Viet P (2019) Simultaneous analysis of polycyclic aromatic hydrocarbons (PAHs) and their possible alkylated substitutes in tea samples based on using two-dimensional gas chromatography hyphenated with time-of-flight mass spectrometry (GCxGC-TOFMS). Vietnam J Chem 57:365–372

    Google Scholar 

  • Wiesman, Z (2009) Olive-oil quality biotechnologies. In Desert olive oil cultivation (pp. 257–302). Elsevier. https://doi.org/10.1016/b978-0-12-374257-5.00011-7

  • Wu S, Gong G, Yan K, Sun Y, Zhang L (2020) Polycyclic aromatic hydrocarbons in edible oils and fatty foods: occurrence, formation, analysis, change and control. Adv Food Nutr Res 93:59–112. https://doi.org/10.1016/bs.afnr.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  • Yanık DK (2017) Alternative to traditional olive pomace oil extraction systems: microwave-assisted solvent extraction of oil from wet olive pomace. LWT Food Sci Technol 77:45–51. https://doi.org/10.1016/j.lwt.2016.11.020

    Article  CAS  Google Scholar 

  • Zachara A, Gałkowska D, Juszczak L (2017) Method validation and determination of polycyclic aromatic hydrocarbons in vegetable oils by HPLC-FLD. Food Anal Methods 10(4):1078–1086. https://doi.org/10.1007/s12161-016-0673-5

    Article  Google Scholar 

  • Zhang Y, Chen X, Zhang Y (2021) Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: from food processing to in vivo metabolic transformation. Comprehensive Rev Food Sci Food Safety 20(2):1422–1456. https://doi.org/10.1111/1541-4337.12705

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.B. wrote the main manuscript text and prepared tables and figures . All authors reviewed the manuscript.

Corresponding author

Correspondence to Laura Barp.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barp, L., Moret, S. Polycyclic Aromatic Hydrocarbons (PAHs) in Olive Pomace Oil: Occurrence, Analytical Determination, and Mitigation Strategies. Food Anal. Methods (2024). https://doi.org/10.1007/s12161-024-02630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12161-024-02630-9

Keywords

Navigation