Skip to main content
Log in

Rapid Identification of Choy Sum Seeds Infected with Penicillium decumbens Based on Hyperspectral Imaging and Stacking Ensemble Learning

  • Research
  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A rapid and effective method for detecting fungal infection in choy sum seeds is necessary to ensure good yield. In this study, 127 spectra of healthy choy sum seeds and 1479 spectra of seeds of choy sum infected with Penicillium decumbens (P. decumbens) were collected using a laboratory-built hyperspectral imaging system. The imbalanced distribution of samples was improved using the synthetic minority over-sampling technique (SMOTE) algorithm. Nine classifiers were used as base classifiers; discriminant analysis was selected as the meta-learner to build the stacking ensemble learning model. The synergy interval partial least square (siPLS) algorithm was used to filter characteristic wavelengths. The SMOTE-siPLS-stacking model was developed using two wavelength ranges (460.96–516.33 nm and 696.61–753.55 nm) as input, achieving accuracy, and F1-score of 99.79% and 99.89%, respectively. The results showed that hyperspectral imaging combined with the SMOTE-siPLS-stacking model is a feasible method to detect P. decumbens.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Research data are not shared.

References

  • Abbott JA, Lu R, Upchurch BL, Stroshine RL (1997) Hortic Rev 20:1–120

    Google Scholar 

  • Akyol K (2020) Expert Syst Appl 148:113239

    Article  Google Scholar 

  • Awang MK, Makhtar M, Udin N, Mansor NF (2021) Int J Adv Comput Sci Appl 12

  • Bach M, Werner A, Żywiec J, Pluskiewicz W (2017) Inform Sci 384:174–190

    Article  Google Scholar 

  • Blagus R, Lusa L (2013) BMC Bioinform 14:1–16

    Google Scholar 

  • Branco P, Torgo L, Ribeiro RP (2016) ACM Comput Surv (CSUR) 49:1–50

    Article  Google Scholar 

  • Caporaso N, Whitworth MB, Fisk ID (2018) Appl Spectrosc Rev 53:667–687

    Article  CAS  Google Scholar 

  • Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) J Artif Intell Res 16:321–357

    Article  Google Scholar 

  • Farajian N, Adibi P (2021) Expert Syst Appl 169:114317

    Article  Google Scholar 

  • Fernández A, Garcia S, Herrera F, Chawla NV (2018) J Artificial Intell Res 61:863–905

    Article  Google Scholar 

  • Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G (2017) Expert Syst Appl 73:220–239

    Article  Google Scholar 

  • He H, Garcia EA (2009) IEEE Trans Knowl Data Eng 21:1263–1284

    Article  Google Scholar 

  • Hengyu Z (2020) 2020 Chinese Automation Congress (CAC), pp 693–697

    Book  Google Scholar 

  • Jadwal PK, Jain S, Pathak S, Agarwal B (2022) Microsyst Technol:1–9

  • Kang S, Cho S, Kang P (2015) Eng Appl Artif Intel 43:35–43

    Article  Google Scholar 

  • Lee H, Kim MS, Lim H-S, Park E, Lee W-H, Cho B-K (2016) Biosyst Eng 148:138–147

    Article  Google Scholar 

  • Li G, Zhang H, Huang H, Qiao Y, Zheng Y et al (2011) China Vegetables:9–14

  • Lin S, Wu Y-Z, Chen K-Y, Ye J, Yang X-W, Zhang W-D (2018) J Asian Nat Prod Res 20:445–450

    Article  CAS  PubMed  Google Scholar 

  • López-de-Ipiña K, Cepeda H, Requejo C, Fernandez E, Calvo PM, Lafuente JV (2019) International Work-Conference on the Interplay between Natural and Artificial Computation, pp 420–427

    Google Scholar 

  • Lu B, Dao PD, Liu J, He Y, Shang J (2020) Remote Sens (Basel) 12:2659

    Article  Google Scholar 

  • Norgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB (2000) Appl Spectrosc 54:413–419

    Article  CAS  Google Scholar 

  • Oksuz K, Cam BC, Kalkan S, Akbas E (2020) IEEE Trans Pattern Anal Mach Intell 43:3388–3415

    Article  Google Scholar 

  • Pang L, Men S, Yan L, Xiao J (2020) IEEE Access 8:123026–123036

    Article  Google Scholar 

  • S. Pascucci, S. Pignatti, R. Casa, R. Darvishzadeh, W. Huang, 12 (2020) 3665.

  • Pristyanto Y, Nugraha AF, Dahlan A, Wirasakti LA, Zein AA, Pratama I (2022) 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM), pp 1–5

    Book  Google Scholar 

  • Pristyanto Y, Nugraha AF, Pratama I, Dahlan A, Wirasakti LA (2021) 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), pp 1–7

    Book  Google Scholar 

  • Rao NR (2008) Int J Remote Sens 29:131–144

    Article  Google Scholar 

  • Reddy P, Panozzo J, Guthridge KM, Spangenberg GC, Rochfort SJ (2023) Sensors 23:1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regente M, Pinedo M, San Clemente H, Balliau T, Jamet E, De La Canal L (2017) J Exp Bot 68:5485–5495

    Article  CAS  PubMed  Google Scholar 

  • Rout N, Mishra D, Mallick MK (2018) International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications. Springer, pp 431–443

    Google Scholar 

  • Sun W, Du Q (2019) IEEE Trans Geosci Remote Sens 7:118–139

    Article  Google Scholar 

  • M. Teke, H.S. Deveci, O. Haliloğlu, S.Z. Gürbüz, U. Sakarya, 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 2013, pp. 171–176

  • Thabtah F, Hammoud S, Kamalov F, Gonsalves A (2020) Inform Sci 513:429–441

    Article  MathSciNet  Google Scholar 

  • Tomaszewski M, Nalepa J, Moliszewska E, Ruszczak B, Smykala K (2023) Sci Rep 13:7671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbiest N, Ramentol E, Cornelis C, Herrera F (2014) Appl Soft Comput 22:511–517

    Article  Google Scholar 

  • Wang C, Liu B, Liu L, Zhu Y, Hou J, Liu P, Li X (2021) Artif Intell Rev 54:5205–5253

    Article  Google Scholar 

  • Wu S, Butt H-J (2016) Adv Mater 28:1208–1226

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Chen K, Yang Y (2021) Inform Sci 557:421–442

    Article  MathSciNet  Google Scholar 

  • Xu P, Fu L, Xu K, Sun W, Tan Q, Zhang Y, Zha X, Yang R (2023) J Food Compos Anal 119:105254

    Article  CAS  Google Scholar 

  • Yao Y, Kong Y, Zhang P, Zhang H, Li G et al (2017) HortScience 52:1048–1051

    Article  Google Scholar 

  • Zhang L, Sun J, Zhou X, Nirere A, Wu X, Dai R (2020b) J Food Process Preserv 44:e14591

    CAS  Google Scholar 

  • Zhang N, Yang G, Pan Y, Yang X, Chen L, Zhao C (2020a) Remote Sens (Basel) 12:3188

    Article  Google Scholar 

  • Zheng Z, Cai Y, Li Y (2015) Comput Inform 34:1017–1037

    Google Scholar 

Download references

Funding

This work was supported by the Guangzhou Science and Technology Project (grant number 202103000095), the National Natural Science Foundation of China (grant number 61975069), the Key-Area Research and Development Program of Guangdong Province (grant number 2020B090922006), the Free Exploration Project of Special Research Funds for the Central Public-Interest Scientific Institution (grant number PM-zx703-202112-338), and Guangdong Provincial Special Project for Rural Revitalization Strategy at the Provincial Level(YCN [2022] No. 92).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanwang Yu or Furong Huang.

Ethics declarations

Ethical Guidelines

Ethics approval was not required for this research.

Conflict of Interest

Baiheng Xie declares that he has no conflict of interest. Bijuan Chen declares that he has no conflict of interest. Jinfang Ma declares that he has no conflict of interest. Jiaze Chen declares that he has no conflict of interest. Yongxin Zhou declares that he has no conflict of interest. Xueqin Han declares that he has no conflict of interest. Zheng Xiong declares that he has no conflict of interest. Zhanwang Yu declares that he has no conflict of interest. Furong Huang declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Combined with hyperspectral imaging and machine vision methods, the diagnosis of Penicillium infection in seeds was realized.

•The stacking ensemble learning model showed excellent performance in the imbalanced classification of seeds.

•The accuracy of the diagnostic model with stacking structure was between 99.17% and 100% for the test data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Chen, B., Ma, J. et al. Rapid Identification of Choy Sum Seeds Infected with Penicillium decumbens Based on Hyperspectral Imaging and Stacking Ensemble Learning. Food Anal. Methods 17, 416–425 (2024). https://doi.org/10.1007/s12161-024-02574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-024-02574-0

Keywords

Navigation