Skip to main content
Log in

Optimization of Experimental Parameters and Chemometrics Approach to Identify Potential Volatile Markers in Seven Cucumis melo Varieties Using HS–SPME–GC–MS

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Volatile compounds produce the aroma of fruits such as melons (Cucumis melo) and therefore play a key role in fruit quality. Here, we optimized experimental parameters to evaluate the effect of blending time, extraction temperature and time, different fibers, sample weight, different columns, and salt on the volatile composition of melons was performed using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC–MS). In general practice, samples are queued up for GC–MS analysis at room temperature (25 °C) for 12–24 h; during this time, the volatile concentrations in samples may vary. To address this, we examined the effect of storage at 4 and 25 °C for 0, 12, 24, 48, and 72 h on samples with and without salt added. Overall, the addition of salt to the sample enhanced the volatile concentration in the headspace and helped preserve the sample at 4 and 25 °C without any significant changes up to 72 h. Our results showed that blending the sample for 1 min, the addition of 1 mL 30% NaCl in a 1 g sample, followed by the adsorption of volatiles with 50/30 µm divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coated 2-cm SPME fiber, and extraction at 80 °C for 30 min were optimal for the detection of melon volatile organic compounds (VOCs). These optimized conditions were employed for the analysis of VOCs from seven melon varieties. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and variable importance on projection (VIP) analyses were performed to identify markers responsible for melon variety discrimination. A total of twenty volatile compounds with VIP > 1.4 are considered as potential markers for the separation of melon varities studied. The combination of HS–SPME–GC–MS and chemometric classification offers a valuable tool for the identification of type-specific volatile markers in melons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amaro AL, Beaulieu JC, Grimm CC, Stein RE, Almeida DPF (2012) Effect of oxygen on aroma volatiles and quality of fresh-cut cantaloupe and honeydew melons. Food Chem 130:49–57

    Article  CAS  Google Scholar 

  • Aubert C, Bourger N (2004) Investigation of volatiles in charentais cantaloupe melons (Cucumis melo var. cantalupensis). Characterization of aroma constituents in some cultivars. J Agric Food Chem 52:4522–4528

    Article  CAS  PubMed  Google Scholar 

  • Aubert C, Pitrat M (2006) Volatile compounds in the skin and pulp of Queen Anne’s pocket melon. J Agric Food Chem 54:8177–8182

    Article  CAS  PubMed  Google Scholar 

  • Aubert C, Baumann S, Arguel H (2005) Optimization of the analysis of flavor volatile compounds by liquid-liquid microextraction (LLME). Application to the aroma analysis of melons, peaches, grapes, strawberries, and tomatoes. J Agric Food Chem 53:8881–8895

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JC (2005) Within-season volatile and quality differences in stored fresh-cut cantaloupe cultivars. J Agric Food Chem 53:8679–8687

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JC (2006) Volatile changes in cantaloupe during growth, maturation, and in stored fresh-cuts prepared from fruit harvested at various maturities. J Am Soc Hortic Sci 131:127–139

    Article  CAS  Google Scholar 

  • Beaulieu JC, Grimm CC (2001) Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J Sci Food Agric 49:1345–1352

    Article  CAS  Google Scholar 

  • Beaulieu JC, Lancaster VA (2007) Correlating volatile compounds, sensory attributes, and quality parameters in stored fresh-cut cantaloupe. J Agric Food Chem 55:9503–9513

    Article  CAS  PubMed  Google Scholar 

  • Beltran J, Peruga A, Pitarch E, López FJ, Hernández F (2003) Application of solid-phase microextraction for the determination of pyrethroid residues in vegetable samples by GC-MS. Anal Bioanal Chem 376:502–511

    Article  CAS  PubMed  Google Scholar 

  • Bernillon S, Biais B, Deborde C, Maucourt M, Cabasson C, Gibon Y, Hansen TH, Husted S, de Vos RC, Mumm R (2013) Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics 9:57–77

    Article  CAS  Google Scholar 

  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Viljoen AM (2010) Geraniol—a review of a commercially important fragrance material. S Afr J Bot 76:643–651

    Article  CAS  Google Scholar 

  • Cincotta F, Verzera A, Tripodi G, Condurso C (2018) Volatile emerging contaminants in melon fruits, analysed by HS-SPME-GC-MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35:512–518

    Article  CAS  PubMed  Google Scholar 

  • Condurso C, Verzera A, Dima G, Tripodi G, Crino P, Paratore A, Romano D (2012) Effects of different rootstocks on aroma volatile compounds and carotenoid content of melon fruits. Sci Hortic 148:9–16

    Article  CAS  Google Scholar 

  • Costa R, Dugo P, Mondello L (2012) 4.03 - Sampling and sample preparation techniques for the determination of the volatile components of milk and dairy products. In: Pawliszyn J (ed) Comprehensive Sampling and Sample Preparation. Academic Press, Oxford, pp 43–59

    Chapter  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Esteras C, Rambla JL, Sanchez G, Lopez-Gresa MP, Gonzalez-Mas MC, Fernandez-Trujillo JP, Belles JM, Granell A, Pico MB (2018) Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. J Sci Food Agric 98:3915–3925

    Article  PubMed  Google Scholar 

  • Fernández-Trujillo JP, Zarid M, Bueso MC (2018) Methodology to remove strong outliers of non-climacteric melon fruit aroma at harvest obtained by HS-SPME GC-MS analysis. Separations 5:30

    Article  Google Scholar 

  • Fredes A, Sales C, Barreda M, Valcarcel M, Rosello S, Beltran J (2016) Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography-mass spectrometry determination. Food Chem 190:689–700

    Article  CAS  PubMed  Google Scholar 

  • Gonda I, Lev S, Bar E, Sikron N, Portnoy V, Davidovich-Rikanati R, Burger J, Schaffer AA, Tadmor Y, Giovannonni JJ, Huang M, Fei Z, Katzir N, Fait A, Lewinsohn E (2013) Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit. Plant J 74:458–472

    Article  CAS  PubMed  Google Scholar 

  • Guler Z, Karaca F, Yetisir H (2013) Volatile compounds and sensory properties in various melons, which were chosen from different species and different locations, grown in turkey. Int J Food Prop 16:168–179

    Article  CAS  Google Scholar 

  • Jordan MJ, Shaw PE, Goodner KL (2001) Volatile components in aqueous essence and fresh fruit of Cucumis melo cv. Athena (muskmelon) by GC-MS and GC-O. J Agric Food Chem 49:5929–5933

    Article  CAS  PubMed  Google Scholar 

  • Kende A, Lim PP, Lai F, Jessop M, Swindale L, Oliver M, Hurr B, Rickett D, Baxter C (2019) High throughput quantitative volatile profiling of melons with silicone rod extraction - thermal desorption - GC-MS for plant breeding line selection. Food Chem 270:368–374

    Article  CAS  PubMed  Google Scholar 

  • Kourkoutas D, Elmore JS, Mottram DS (2006) Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem 97:95–102

    Article  CAS  Google Scholar 

  • Lamikanra O, Watson M (2004) Storage effects on lipase activity in fresh‐cut cantaloupe melon. J Food Sci 69:fct126–130

  • Lamikanra O, Richard OA (2002) Effect of storage on some volatile aroma compounds in fresh-cut cantaloupe melon. J Agric Food Chem 50:4043–4047

    Article  CAS  PubMed  Google Scholar 

  • Lamikanra O, Watson M (2000) Cantaloupe melon peroxidase: characterization and effects of additives on activity. Food Nahrung 44:168–172

    Article  CAS  PubMed  Google Scholar 

  • Lee JHJ, Jayaprakasha GK, Rush CM, Crosby KM, Patil BS (2018) Production system influences volatile biomarkers in tomato. Metabolomics 14:99

    Article  PubMed  Google Scholar 

  • Lignou S, Parker JK, Baxter C, Mottram DS (2014) Sensory and instrumental analysis of medium and long shelf-life Charentais cantaloupe melons (Cucumis melo L.) harvested at different maturities. Food Chem 148:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magdic S, Boyd-Boland A, Jinno K, Pawliszyn JB (1996) Analysis of organophosphorus insecticides from environmental samples using solid-phase microextraction. J Chromatogr A 736:219–228

    Article  CAS  Google Scholar 

  • Medina S, Perestrelo R, Santos R, Pereira R, Câmara JS (2019) Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchem J 150:104094

  • Missaoui I, Sayedi L, Jamoussi B, Hassine BB (2009) Response surface optimization for determination of volatile organic compounds in water samples by headspace-gas chromatography—mass spectrometry method. J Chromatogr Sci 47:257–262

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JM, Cantliffe DJ, Klee HJ, Sargent SA, Stoffella PJ, Tieman D Fruit quality and aroma characteristics of a specialty red-fleshed melon (Cucumis melo L.),‘Red Moon’. In: Proceedings of the Florida State Horticultural Society, 2008. pp 274–280

  • Obando-Ulloa JM, Moreno E, Garcıa-Mas J, Nicolai B, Lammertync J, Monforte JA, Fernandez-Trujillo JP (2008) Climacteric or non-climacteric behavior in melon fruit: 1. Aroma Volatiles Postharvest Biol Technol 49:27–37

    Article  CAS  Google Scholar 

  • Perry PL, Wang Y, Lin J (2009) Analysis of honeydew melon (Cucumis melo var. inodorus) flavour and GC–MS/MS identification of (E, Z)-2, 6-nonadienyl acetate. Flavour Fragr J 24:341–347

    Article  CAS  Google Scholar 

  • Pitrat M (2016) Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, Garcia-Mas J (eds) Genetics and genomics of cucurbitaceae. Plant genetics and genomics: crops and models. Springer International Publishing, Cham, pp 25–60. doi:https://doi.org/10.1007/7397_2016_10

  • Priyanka D, Sindhoora S, Vijayanand P, Kulkarni SG, Nagarajan S (2015) Influence of thermal processing on the volatile constituents of muskmelon puree. J Food Sci Technol 52:3111–3116

    Article  CAS  PubMed  Google Scholar 

  • Sales A, Felipe LdO, Bicas JL (2020) Production, properties, and applications of α-terpineol. Food Bioproc Tech 13:1261–1279

    Article  CAS  Google Scholar 

  • Senesi E, Scalzo RL, Prinzivalli C, Testoni A (2002) Relationships between volatile composition and sensory evaluation in eight varieties of netted muskmelon (Cucumis melo L var reticulatus Naud). J Sci Food Agric 82:655–662

    Article  CAS  Google Scholar 

  • Senesi E, Di Cesare LF, Prinzivalli C, Scalzo RL (2005) Influence of ripening stage on volatiles composition, physicochemical indexes and sensory evaluation in two varieties of muskmelon (Cucumis melo L var reticulatus Naud). J Sci Food Agric 85:1241–1251

    Article  CAS  Google Scholar 

  • Shi J, Wu H, Xiong M, Chen Y, Chen J, Zhou B, Wang H, Li L, Fu X, Bie Z (2020) Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food Chem 316:126342

  • Tankiewicz M, Morrison C, Biziuk M (2013) Multi-residue method for the determination of 16 recently used pesticides from various chemical groups in aqueous samples by using DI-SPME coupled with GC–MS. Talanta 107:1–10

    Article  CAS  PubMed  Google Scholar 

  • USDA-NASS Vegetables, National Agriculture Statistics Service (NASS), USDA (n.d.) https://quickstats.nass.usda.gov/results/BDD9B25C-BD3A-3B04-8B23-28E0A60379D2?pivot=short_desc. Accessed 13 Feb 2019

  • Vallone S, Sivertsen H, Anthon GE, Barrett DM, Mitcham EJ, Ebeler SE, Zakharov F (2013) An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chem 139:171–183

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven HA, Jonker H, De Vos RC, Hall RD (2011) Solid phase micro-extraction GC–MS analysis of natural volatile components in melon and rice. In: Plant metabolomics. Springer, pp 85–99

  • Verma RS, Padalia RC, Singh VR, Goswami P, Chauhan A, Bhukya B (2017) Natural benzaldehyde from Prunus persica (L.) Batsch. Int J Food Prop 20:1259–1263

    CAS  Google Scholar 

  • Verzera A, Dima G, Tripodi G, Ziino M, Lanza CM, Mazzaglia A (2010) Fast quantitative determination of aroma volatile constituents in melon fruits by headspace–solid-phase microextraction and gas chromatography–mass spectrometry. Food Anal Methods 4:141–149

    Article  Google Scholar 

  • Wu Y, Duan S, Zhao L, Gao Z, Luo M, Song S, Xu W, Zhang C, Ma C, Wang S (2016) Aroma characterization based on aromatic series analysis in table grapes. Sci Rep 6:31116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. John L. Jifon (Texas A&M AgriLife Research and Extension Center, Weslaco, TX) for growing and providing the melon varieties for this study.

Funding

This study was supported by the USDA-NIFA-SCRI-2017–51181-26834 through the National Center of Excellence for Melons at the Vegetable and Fruit Improvement Center of Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhimanagouda S. Patil.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 821 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metrani, R., Jayaprakasha, G.K. & Patil, B.S. Optimization of Experimental Parameters and Chemometrics Approach to Identify Potential Volatile Markers in Seven Cucumis melo Varieties Using HS–SPME–GC–MS. Food Anal. Methods 15, 607–624 (2022). https://doi.org/10.1007/s12161-021-02119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-021-02119-9

Keywords

Navigation