Skip to main content

Comparative Evaluation of Some Quality Characteristics of Sunflower Oilseeds (Helianthus annuus L.) Through Machine Learning Classifiers

Abstract

Sunflower seeds are rich in oil and oleic acid, thus having valuable nutritional properties. Sunflower is also resistant to dry conditions and can adapt easily to harsh environmental conditions. Physico-chemical properties play a great role in classification, grading, and quality assessment of sunflower seeds. In present study, six different machine learning algorithms (decision tree, DT; random forest, RF; support vector machine, SVM; multiple linear regression, MLR; Naïve Bayes, NB; and multilayer perceptron, MLP) were used to evaluate the classification performance for six different sunflower oilseed varieties. Additionally, characteristic properties of the oilseeds were evaluated by multivariate tests (MANOVA) and discriminant analysis. The best accuracy values were recorded as 80.16, 79.68, and 78.89 for RF, SVM, and MLP, respectively, and the lowest MAE value (0.088) was observed in NB. The MANOVA, Wilks’ lambda, and Pillai Trace statistics revealed that differences in physical attributes of the sunflower varieties were significant (p<0.01). Colombi and Transol varieties with the lowest Mahalanobis distances had the similar attributes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdipour M, Younessi-Hmazekhanlu M, Ramazani SHR (2019) Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Ind Crop Prod 127:185–194. https://doi.org/10.1016/j.indcrop.2018.10.050

    Article  Google Scholar 

  2. Adeleke BS, Babalola OO (2020) Oilseed crop sunflower (Helianthus annuus) as a source of food: nutritional and health benefits. Food Sci Nutr 8:4666–4684. https://doi.org/10.1002/fsn3.1783

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Alberio C, Izquierdo NG, Galella T, Zuil S, Reid R, Zambelli A, Aguirrezábal LA (2016) A new sunflower high oleic mutation confers stable oil grain fatty acid composition across environments. Eur J Agron 73:25–33. https://doi.org/10.1016/j.eja.2015.10.003

    CAS  Article  Google Scholar 

  4. Ali J, Khan R, Ahmad N, Maqsood I (2012) Random forests and decision trees. Int J Comput Sci 9:272–278

    Google Scholar 

  5. Angeloni P, Echarte MM, Irujo GP, Izquierdo N, Aguirrezábal L (2017) Fatty acid composition of high oleic sunflower hybrids in a changing environment. Field Crop Res 202:146–157. https://doi.org/10.1016/j.fcr.2016.04.005

    Article  Google Scholar 

  6. AOAC (2000) Official methods of analysis of AOAC international, 17th edn. AOAC International, Gaithersburg

    Google Scholar 

  7. Arts MT, Ackman RG, Holub BJ (2001) Essential fatty acids in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58(1):122–137. https://doi.org/10.1139/f00-224

    CAS  Article  Google Scholar 

  8. Ataş M, Yardimci Y, Temizel A (2012) A new approach to aflatoxin detection in chili pepper by machine vision. Comput Electron Agric 87:129–141

    Article  Google Scholar 

  9. Avni T, Anupriya S, Rai P, Maan K, Naryansamy CCN (2016) Effects of heating and storage on nutritional value of sunflower oil. DU JUndergr Res Innov 2(1):196–202

    Google Scholar 

  10. Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L et al (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546(7656):148–152. https://doi.org/10.1038/nature22380

    CAS  Article  PubMed  Google Scholar 

  11. Banakar A, Zareiforoush H, Baigvand M, Montazeri M, Khodaei J, Behroozi-Khazaei N (2017) Combined application of decision tree and fuzzy logic techniques for intelligent grading of dried figs. J Food Process Eng 40(3):1–12. https://doi.org/10.1111/jfpe.12456

    Article  Google Scholar 

  12. Barbosa RM, Batista BL, Barião CV, Varrique RM, Coelho VA, Campiglia AD, Barbosa F Jr (2015) A simple and practical control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry. Food Chem 184:154–159. https://doi.org/10.1016/j.foodchem.2015.02.146

    CAS  Article  PubMed  Google Scholar 

  13. Berhane T, Lane C, Wu Q, Autrey B, Anenkhonov O, Chepinoga V, Liu H (2018) Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sens 10:580. https://doi.org/10.3390/rs10040580

    Article  Google Scholar 

  14. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159

    Article  Google Scholar 

  15. Bramer M (2007) Principles of data mining, vol 180. Springer, London. https://doi.org/10.1007/978-1-4471-7307-6

    Book  Google Scholar 

  16. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  17. Cater NB, Garg A (1997) Serum low-density lipoprotein cholesterol response to modification of saturated fat intake: recent insights. Curr Opin Lipidol 8(6):332–336. https://doi.org/10.1097/00041433-199712000-00002

    CAS  Article  PubMed  Google Scholar 

  18. Çetin N, Yaman M, Karaman K, Demir B (2020) Determination of some physicomechanical and biochemical parameters of hazelnut (Corylus avellana L.) cultivars. Turk J Agric For 44(5):439–450

    Article  Google Scholar 

  19. Colton T (1974) Statistics in Medicine. Little Brown and Co, New York, p p179

    Google Scholar 

  20. Connor WE (2000) Importance of n− 3 fatty acids in health and disease. Am J Clin Nutr 71(1):171–175. https://doi.org/10.1093/ajcn/71.1.171S

    Article  Google Scholar 

  21. Costa C, Antonucci F, Pallottino F, Aguzzi J, Sun DW, Menesatti P (2011) Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision. Food Bioprocess Technol 4:673–692. https://doi.org/10.1007/s11947-011-0556-0

    Article  Google Scholar 

  22. Demir İ, Basalma D (2018) Response of different level of nitrogen and sulphur doses on oil yield and seed nutrients content of sunflower (Helianthus annuus L.). Fresenius Environ Bull 27(9):6337–6342

    CAS  Google Scholar 

  23. Demir B, Sayıncı B, Çetin N, Yaman M, Çömlek R, Aydın Y, Sütyemez M (2018) Elliptic Fourier based analysis and multivariate approaches for size and shape distinctions of walnut (Juglans regia L.) cultivars. Grasas Aceites 69(4):e271. https://doi.org/10.3989/gya.0104181

    Article  Google Scholar 

  24. Drazin S, Montag M 2012. Decision tree analysis using weka. Machine Learning-Project II, University of Miami, 1-3.

  25. Ekin Z, Tuncturk M, Yilmaz I (2005) Evaluation of seed, oil yields and yield properties of different sunflower (Helianthus annus L.) hybrid varieties in Van, Turkey. Pak J Biol Sci 8:683–686. https://doi.org/10.3923/pjbs.2005.683.686

    Article  Google Scholar 

  26. Esmaeili A, Shaykhmoradi F, Naseri R (2012) Comparison of oil content and fatty acid composition of native olive genotypes in different region of Liam. Iran Intl J Agric Crop Sci 4(8):434–438

    Google Scholar 

  27. Fıratlıgil-Durmus E, Sárka E, Bubník Z, Schejbal M, Kadlec P (2010) Size properties of legume seeds of different varieties using image analysis. J Food Eng 99(4):445–451. https://doi.org/10.1016/j.jfoodeng.2009.08.005

    Article  Google Scholar 

  28. Gumus ZP, Ertas H, Yasar E, Gumus O (2018) Classification of olive oils using chromatography, principal component analysis and artificial neural network modelling. JFood Meas Character 12(2):1325–1333. https://doi.org/10.1007/s11694-018-9746-z

    Article  Google Scholar 

  29. Gumus O, Yasar E, Gumus ZP, Ertas H (2019) Comparison of different classification algorithms to identify geographic origins of olive oils. J Food Sci Technol 57:1–9. https://doi.org/10.1007/s13197-019-04189-4

    CAS  Article  Google Scholar 

  30. Gupta RK, Das SK (1997) Physical properties of sunflower seed. J Agric Eng Res 66(1):1–8. https://doi.org/10.1006/jaer.1996.0111

    Article  Google Scholar 

  31. Gupta M, Shrivastava SK (2004) Proximate composition of some new varieties of oil seeds. Int J Chem Sci 2(3):375–378

    CAS  Google Scholar 

  32. Gupta RK, Arora G, Sharma R (2007) Aerodynamic properties of sunflower seed (Helianthus annuus L.). J Food Eng 79(3):899–904. https://doi.org/10.1016/j.jfoodeng.2006.03.010

    Article  Google Scholar 

  33. Hall MA (1999) Correlation-based feature selection for machine learning. PhD Thesis, University of Waikato, Hamilton

  34. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H. 2009. The WEKA data mining software: an update. SIGKDD Explorations. Available online: http://www.cs.waikato.ac.nz. (Accessed 12 April 2019).

  35. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  36. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  37. IBM SPSS® (2010). Statistical software. SSS Inc., IBM Company©, Version 20.0.

  38. Ingale S, Shrivastava SK (2011) Chemical studies of new varieties of sunflower (Helianthus annuus) LSF-11 and LSF-8 seeds. Agric Biol JN Am 2(8):1171–1181

    CAS  Google Scholar 

  39. Izquierdo NG, Aguirrezábal LAN (2008) Genetic variability in the response of fatty acid composition to minimum night temperature during grain filling in sunflower. Field Crop Res 106(2):116–125. https://doi.org/10.1016/j.fcr.2007.10.016

    Article  Google Scholar 

  40. Jafari S, Khazaei J, Arabhosseini A, Massah J, Khoshtaghaza MH (2011) Study on mechanical properties of sunflower seeds. Food Sci Technol 14(1):6

    Google Scholar 

  41. Karray FO, Silva CD (2004) Soft computing and intelligent systems design: theory, tools and applications. Addison Wesley Pearson Press, New York

    Google Scholar 

  42. Kavdır I, Guyer DE (2008) Evaluation of different pattern recognition techniques for apple sorting. Biosyst Eng 99(2):211–219. https://doi.org/10.1016/j.biosystemseng.2007.09.019

    Article  Google Scholar 

  43. Kays SJ (1999) Preharvest factors affecting appearance. Postharvest Biol Technol 15:233–247. https://doi.org/10.1016/S0925-5214(98)00088-X

    Article  Google Scholar 

  44. Khazaei J., Jafari, S., Noorolah. S. 2008. Lognormal vs. Normal and Weibull distributions for modeling the mass and size distributions of sunflower seeds and kernels. World Conference on Agricultural Information and IT.

  45. Khodabakhshian R, Emadi B, Abbaspour Fard MH (2009) Aerodynamic properties of sunflower seed, kernel and its hull affected by moisture content and size, azargol variety as a case study. International Agricultural Engineering Conference, Bangkok

    Google Scholar 

  46. Khodabakhshian R, Emadi B, Fard MA (2010) Some engineering properties of sunflower seed and its kernel. Nong Ye Ke Xue Yu Ji Shu 4(4):37

    Google Scholar 

  47. Kirbaslar FG, Türker G, Özsoy-Günes Z, Ünal M, Dülger B, Ertas E, Kizilkaya B (2012) Evaluation of fatty acid composition, antioxidant and antimicrobial activity, mineral composition and calorie values of some nuts and seeds from Turkey. Records Nat Prod 6(4):339

    CAS  Google Scholar 

  48. Kiriamiti HK, Rascol E, Marty A, Condoret JS (2002) Condoret, Extraction rate of oil from high oleic sunflower seeds with supercritical carbon dioxide. Chem Eng Process 41:711–718. https://doi.org/10.1016/S0255-2701(01)00191-X

    CAS  Article  Google Scholar 

  49. Konuskan OMER, Konuskan DB, Levai CM (2017) Effect of foliar boron fertilization on chemical properties and fatty acid compositions of corn (Zea mays L.). Rev Chim (Bucharest) 68(9):2073–2075. https://doi.org/10.3965/j.ijabe.20160901.1790

    CAS  Article  Google Scholar 

  50. Kurtulmuş, F. 2020. Identification of sunflower seeds with deep convolutional neural networks. J Food Meas Characterization, 1-10. https://doi.org/10.1007/s11694-020-00707-7

  51. Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59:161–205. https://doi.org/10.1007/s10994-005-0466-3

    Article  Google Scholar 

  52. Li WP, Shi HB, Zhu K, Zheng Q, Xu Z (2017) The quality of sunflower seed oil changes in response to nitrogen fertilizer. Agron J 109(6):2499–2507. https://doi.org/10.2134/agronj2017.01.0046

    CAS  Article  Google Scholar 

  53. Malik MA, Saini CS (2016) Engineering properties of sunflower seed: effect of dehulling and moisture content. Cogent Food Agric 2(1):1145783. https://doi.org/10.1080/23311932.2016.1145783

    CAS  Article  Google Scholar 

  54. Marini F, Magrı AL, Balestrieri F, Fabretti F, Marini D (2004) Supervised pattern recognition applied to the discrimination of the floral origin of six types of Italian honey samples. Anal Chim Acta 515(1):117–125. https://doi.org/10.1016/j.aca.2004.01.013

    CAS  Article  Google Scholar 

  55. Mertens D (2005a) Plants preparation of laboratory sample. In: Horwitzand W, Latimer GW (eds) Official Methods of Analysis of AOAC International, 18th edn. AOAC International, Gaithersburg, pp 1–2

    Google Scholar 

  56. Mertens D (2005b) Metal in plants and pet foods. In: Horwitz W, Latimer GW (eds) Official Methods of Analysis of AOAC International, 18th edn. AOAC International, Gaithersburg, pp 3–4

    Google Scholar 

  57. Mirzabe AH, Khazaei J, Chegini GR (2012) Physical properties and modeling for sunflower seeds. Agric Eng Int CIGR J 14(3):190–202

    Google Scholar 

  58. Mohsenin NN (1986) Physical properties of plant and animal materials: structure, physical characteristics and mechanical properties. Gordon and Breach Science Publishers, New York

    Google Scholar 

  59. Mollazade K, Omid M, Arefi A (2012) Comparing data mining classifiers for grading raisins based on visual features. Comput Electron Agric 84:124–131. https://doi.org/10.1016/j.compag.2012.03.004

    Article  Google Scholar 

  60. Munder S, Argyropoulos D, Mueller J (2017) Class-based physical properties of air-classified sunflower seeds and kernels. Biosyst Eng 164:124–134. https://doi.org/10.1016/j.biosystemseng.2017.10.005

    Article  Google Scholar 

  61. Niazian M, Sadat-Noori SA, Abdipour M (2018) Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Ind Crop Prod 117:224–234. https://doi.org/10.1016/j.indcrop.2018.03.013

    Article  Google Scholar 

  62. Omid M (2011) Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Syst Appl 38(4):4339–4347. https://doi.org/10.1016/j.eswa.2010.09.103

    Article  Google Scholar 

  63. Omid M, Khojastehnazhand M, Tabatabaeefar A (2010) Estimating volume and mass of citrus fruits by image processing technique. J Food Eng 100(2):315–321. https://doi.org/10.1016/j.jfoodeng.2010.04.015

    Article  Google Scholar 

  64. Omobuwajo TO, Akande AE, Sanni LA (1999) Selected physical, mechanical and aerodynamic properties African Breadfruit (Treculia africana) seeds. J Food Eng 40:241–244. https://doi.org/10.1016/S0260-8774(99)00060-6

    Article  Google Scholar 

  65. Ortiz-Hernandez AA, Araiza-Esquivel M, Delgadillo-Ruiz L, Ortega-Sigala JJ, Durán-Muñoz HA, Mendez-Garcia VH, Yacaman MJ, Vega-Carrillo HR (2020) Physical characterization of sunflower seeds dehydrated by using electromagnetic induction and low-pressure system. Innov Food Sci Emerg Technol 60:102285. https://doi.org/10.1016/j.ifset.2019.102285

    Article  Google Scholar 

  66. Ozkan G, Koyuncu MA (2005) Physical and chemical composition of some walnut (Juglans regia L.) genotypes grown in Turkey. Grasas Aceites 56:141–146. https://doi.org/10.3989/gya.2005.v56.i2.122

    CAS  Article  Google Scholar 

  67. Parker J (2001) Rank and response combination from confusion matrix data. Inf Fusion 2:113–120. https://doi.org/10.1016/S1566-2535(01)00030-6

    Article  Google Scholar 

  68. Pietersma D, Lacroix R, Lefebvre D, Wade KM (2003) Performance analysis for machine-learning experiments using small data sets. Comput Electron Agric 38(1):1–17

    Article  Google Scholar 

  69. Quinlan JR (1993) Combining instance-based and model-based learning. In Proceedings of the tenth international conference on machine learning, pp 236–243

  70. Rieseberg LH, Van Fossen C, Desrochers AM (1995) Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375:313–316. https://doi.org/10.1038/375313a0

    CAS  Article  Google Scholar 

  71. Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens 67:93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002

    Article  Google Scholar 

  72. Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst, Man, Cybernet 21(3):660–674. https://doi.org/10.1109/21.97458

    Article  Google Scholar 

  73. Salgin U, Doker O, Calimli A (2006) Extraction of sunflower oil with supercritical CO2: experiments and modeling. J Supercrit Fluids 38(3):326–331. https://doi.org/10.1016/j.supflu.2005.11.015

    CAS  Article  Google Scholar 

  74. Salimon J, Farhan N (2012) Physiochemical properties of Saudi extra virgin olive oil. Int J Chem Environ Eng 3(3):205–208

    CAS  Google Scholar 

  75. Santalla EM, Mascheroni RH (2003) Equilibrium moisture characteristics of high oleic sunflower seeds and kernels. Dry Technol 21(1):147–163. https://doi.org/10.1081/DRT-120017288

    Article  Google Scholar 

  76. Sayıncı B, Ercişli S, Akbulut M, Şavşatlı Y, Baykal H (2015) Determination of shape in fruits of cherry laurel (Prunus laurocerasus) accessions by using Elliptic Fourier analysis. Acta Sci Polonorum, Hortorum Cultus 14(1):63–82

    Google Scholar 

  77. Siedliska A, Baranowski P, Zubik M, Mazurek W (2017) Detection of pits in fresh and frozen cherries using a hyperspectral system in transmittance mode. J Food Eng 215:61–71. https://doi.org/10.1016/j.jfoodeng.2017.07.028

    Article  Google Scholar 

  78. Soltani M, Omid M (2015) Detection of poultry egg freshness by dielectric spectroscopy and machine learning techniques. LWT-Food SciTechnol 62(2):1034–1042. https://doi.org/10.1016/j.lwt.2015.02.019

    CAS  Article  Google Scholar 

  79. Sorkheh K, Kazemifard A, Rajabpoor S (2018) A comparative study of fuzzy linear regression and multiple linear regression in agricultural studies: a case study of lentil yield management. Turk J Agric For 42:402–411. https://doi.org/10.3906/tar-1709-57

    Article  Google Scholar 

  80. Sukhija PS, Palmquist DL (1988) Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem 36(6):1202–1206

  81. Stegmayer G, Milone DH, Garran S, Burdyn L (2013) Automatic recognition of quarantine citrus diseases. Expert Syst Appl 40(9):3512–3517

    Article  Google Scholar 

  82. Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P (2011) Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Mol Biol Evol 29(4):1155–1166. https://doi.org/10.1093/molbev/msr283

    CAS  Article  PubMed  Google Scholar 

  83. Vandenbrink JP, Brown EA, Harmer SL, Blackman BK (2014) Turning heads: the biology of solar tracking in sunflower. Plant Sci 224:20–26. https://doi.org/10.1016/j.plantsci.2014.04.006

    CAS  Article  PubMed  Google Scholar 

  84. Vapnik VN (2000) Methods of pattern recognition. In: In The nature of statistical learning theory. Springer, New York, pp 123–180. https://doi.org/10.1007/978-1-4757-3264-1_6

    Chapter  Google Scholar 

  85. Vereecken H, Herbst M (2004) Statistical regression. In: Pachepsky YA, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/S0166-2481(04)30001-2

    Chapter  Google Scholar 

  86. Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363

    PubMed  Google Scholar 

  87. Webb DR, Sanders RA (1991) Caprenin 1. Digestion, absorption, and rearrangement in thoracic duct-cannulated rats. J Am Coll Toxicol 10(3):325–340. https://doi.org/10.3109/10915819109079813

    CAS  Article  Google Scholar 

  88. Werteker M, Lorenz A, Johannes H, Berghofer E, Findlay CS (2010) Environmental and varietal influences on the fatty acid composition of rapeseed, soybeans and sunflowers. J Agron Crop Sci 196(1):20–27. https://doi.org/10.1111/j.1439-037X.2009.00393.x

    CAS  Article  Google Scholar 

  89. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann Press, San Francisco

    Google Scholar 

  90. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ..., Zhou, Z. H. 2008. Top 10 algorithms in data mining. Knowledge and Information Systems, 14 (1), 1–37. https://doi.org/10.1007/s10115-007-0114-2

  91. Zielinska M, Zapotoczny P, Białobrzewski I, Zuk-Golaszewska K, Markowski M (2012) Engineering properties of red clover (Trifolium pratense L.) seeds. Ind Crop Prod 37(1):69–75. https://doi.org/10.1016/j.indcrop.2011.12.002

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Necati Çetin.

Ethics declarations

Ethics Approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent is not applicable in this study.

Conflict of Interest

Necati Çetin declares that he has no conflict of interest. Kevser Karaman declares that she has no conflict of interest. Erman Beyzi declares that he has no conflict of interest. Cevdet Sağlam declares that he has no conflict of interest. Bahadır Demirel declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çetin, N., Karaman, K., Beyzi, E. et al. Comparative Evaluation of Some Quality Characteristics of Sunflower Oilseeds (Helianthus annuus L.) Through Machine Learning Classifiers. Food Anal. Methods 14, 1666–1681 (2021). https://doi.org/10.1007/s12161-021-02002-7

Download citation

Keywords

  • Sunflower oilseed
  • Biochemical
  • Physical
  • Feature selection
  • Random forest