Abe H, Hayano A, Inoue-Murayama M (2012) Forensic species identification of large macaws using DNA barcodes and microsatellite profiles. Mol Biol Rep 39:693–699. https://doi.org/10.1007/s11033-011-0787-1
CAS
Article
PubMed
Google Scholar
Amane D, Ananthanarayan L (2019) Detection of adulteration in black gram-based food products using DNA barcoding. Food Control 104:193–200. https://doi.org/10.1016/j.foodcont.2019.04.041
CAS
Article
Google Scholar
Ball AA, Brancalion PHS (2016) Governance challenges for commercial exploitation of a non-timber forest product by marginalized rural communities. Environ Conserv 43:208–220. https://doi.org/10.1017/S0376892916000072
Article
Google Scholar
Bolson M, De Camargo SE, Brotto ML, Silva-Pereira V (2015) ITS and trnH-psbA as efficient DNA barcodes to identify threatened commercial woody angiosperms from Southern Brazilian Atlantic rainforests. PLoS One 10:1–18. https://doi.org/10.1371/journal.pone.0143049
CAS
Article
Google Scholar
Brazilian Flora (2020) Euterpe. In: Jardim Botânico do Rio Janeiro http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB15711. Accessed 18 Jan 2020
Google Scholar
CBOL Plant Working Group (2009) A DNA barcode for land plants
Book
Google Scholar
Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc B Biol Sci 360:1889–1895. https://doi.org/10.1098/rstb.2005.1720
CAS
Article
Google Scholar
Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:1–8. https://doi.org/10.1371/journal.pone.0008613
CAS
Article
Google Scholar
Cowan RS, Chase MW, Kress WJ, Savolainen V (2006) 300,000 Species to identify: problems, progress, and prospects in DNA barcoding of land plants. Taxon 55:611–616. https://doi.org/10.2307/25065638
Article
Google Scholar
Cuénoud P, Savolainen V, Chatrou LW et al (2002) Molecular phylogenetics of caryophyllales based on nuclear 18S rDNA and plastid rbcl, atpB, and matK DNA sequences. Am J Bot 89:132–144. https://doi.org/10.3732/ajb.89.1.132
Article
PubMed
Google Scholar
Dong W, Liu H, Xu C, Zuo Y, Chen Z, Zhou S (2014) A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs. BMC Genet 15:138. https://doi.org/10.1186/s12863-014-0138-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Dong W, Xu C, Li C et al (2015) ycf1, the most promising plastid DNA barcode of land plants. Sci Rep. https://doi.org/10.1038/srep08348
Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 19:1–19. https://doi.org/10.1186/1471-2105-5-113
CAS
Article
Google Scholar
Enan MR, Ahmed A (2016) Cultivar-level phylogeny using chloroplast DNA barcode psbK-psbI spacers for identification of Emirati date palm (Phoenix dactylifera L.) varieties. Genet Mol Res 15. https://doi.org/10.4238/gmr.15038470
Faria MA, Magalhães A, Nunes ME, Oliveira MBPP (2013) High resolution melting of trnL amplicons in fruit juices authentication. Food Control 33:136–141. https://doi.org/10.1016/j.foodcont.2013.02.020
CAS
Article
Google Scholar
Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SCH (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3:e2802. https://doi.org/10.1371/journal.pone.0002802
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferri G, Alù M, Corradini B, Beduschi G (2009) Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach. Int J Legal Med 123:395–401. https://doi.org/10.1007/s00414-009-0356-5
Article
PubMed
Google Scholar
Galimberti A, De Mattia F, Losa A et al (2013) DNA barcoding as a new tool for food traceability. Food Res. Int. 50:55–63
CAS
Article
Google Scholar
Gillespie LJ, Soreng RJ, Jacobs SWL (2009) Phylogenetic relationships of Australian Poa (Poaceae: Poinae), including molecular evidence for two new genera, Saxipoa and Sylvipoa. Aust Syst Bot 22:413–436. https://doi.org/10.1071/SB09016
Article
Google Scholar
Gonçalves PFM, Oliveira-marques AR, Matsumoto TE, Miyaki CY (2015) Symposium Article DNA barcoding identifies illegal parrot trade. J Hered:560–564. https://doi.org/10.1093/jhered/esv035
Gonzalez MA, Baraloto C, Engel J, Mori SA, Pétronelli P, Riéra B, Roger A, Thébaud C, Chave J (2009) Identification of Amazonian trees with DNA barcodes. PLoS One 4:e7483. https://doi.org/10.1371/journal.pone.0007483
CAS
Article
PubMed
PubMed Central
Google Scholar
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
CAS
Google Scholar
Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321. https://doi.org/10.1098/rspb.2002.2218
CAS
Article
Google Scholar
Henderson A, Galeano G (1996) New York Botanical Garden Press, Organization for Flora Neotropica
Google Scholar
Hollingsworth ML, Andra Clark A, Forrest LL et al (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour. 9:439–457. https://doi.org/10.1111/j.1755-0998.2008.02439.x
CAS
Article
PubMed
Google Scholar
Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6:e19254. https://doi.org/10.1371/journal.pone.0019254
CAS
Article
PubMed
PubMed Central
Google Scholar
Jaakola L, Suokas M, Häggman H (2010) Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem 123:494–500. https://doi.org/10.1016/j.foodchem.2010.04.069
CAS
Article
Google Scholar
Japelaghi RH, Haddad R, Garoosi GA (2011) Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol Biotechnol 49:129–137. https://doi.org/10.1007/s12033-011-9384-8
CAS
Article
PubMed
Google Scholar
Jiao L, Lu Y, He T, Li J, Yin Y (2019) A strategy for developing high-resolution DNA barcodes for species discrimination of wood specimens using the complete chloroplast genome of three Pterocarpus species. Planta. 250:95–104. https://doi.org/10.1007/s00425-019-03150-1
CAS
Article
PubMed
Google Scholar
Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2:e508. https://doi.org/10.1371/journal.pone.0000508
CAS
Article
PubMed
PubMed Central
Google Scholar
Lahaye R, Savolainen V, Duthoit S, et al (2008) A test of psbK-psbI and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park as a model system (South Africa)
Book
Google Scholar
Lee HL, Yi DK, Kim JS, Kim KJ (2007) Development of plant DNA barcoding markers from the variable noncoding regions of chloroplast genome. In: The second international barcode of life conference, Taipei
Levin R, Wagner WL, Hoch PC et al (2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am J Bot 90:107–115. https://doi.org/10.3732/ajb.90.1.107
CAS
Article
PubMed
Google Scholar
Lorenzi H, Kahn F, Noblick LR, Ferreira E (2010) Flora Brasileira - Arecaceae (Palmeiras). Instituto Plantarum, Nova Odessa
Google Scholar
Martinelli G, Moraes M (2013) Livro Vermelho da Flora do Brasil, 1st edn. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro
Google Scholar
Ministry of Agriculture Livestock and Food Supply (2018) Normative Instruction No. 37. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/44304988/do1-2018-10-08-instrucao-normativa-n-37. Accessed 11 Jan 2021
Google Scholar
Oliveira M d SP, Schwartz G (2018) Açaí— Euterpe oleracea. In: Exotic Fruits Reference Guide, pp 1–5
Google Scholar
Parveen I, Gafner S, Techen N, Murch S, Khan I (2016) DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations. Planta Med 82:1225–1235. https://doi.org/10.1055/s-0042-111208
CAS
Article
PubMed
Google Scholar
Rambaut A (2009) FigTree, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/
Google Scholar
Roy S, Tyagi A, Shukla V, Kumar A, Singh UM, Chaudhary LB, Datt B, Bag SK, Singh PK, Nair NK, Husain T, Tuli R (2010) Universal plant DNA barcode loci may not work in complex groups: a case study with Indian berberis species. PLoS One 5:e13674. https://doi.org/10.1371/journal.pone.0013674
CAS
Article
PubMed
PubMed Central
Google Scholar
Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136. https://doi.org/10.2307/2446155
CAS
Article
PubMed
Google Scholar
Santos PHD, Carvalho BM, Aredes FAS, Mussi-Dias V, Pinho DB, Pereira MG, da Silveira SF (2020) Is Lasiodiplodia theobromae the only species that causes leaf blight disease in Brazilian coconut palms? Trop Plant Pathol 45:434–442. https://doi.org/10.1007/s40858-020-00344-x
Article
Google Scholar
Santos VS, Nardini V, Cunha LC et al (2014) Identification of species of the Euterpe genus by rare earth elements using inductively coupled plasma mass spectrometry and linear discriminant analysis. Food Chem 153:334–339. https://doi.org/10.1016/j.foodchem.2013.12.057
CAS
Article
PubMed
Google Scholar
Schauss AG, Wu X, Prior RL et al (2006) Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (Acai). J Agric Food Chem. https://doi.org/10.1021/jf0609779
Schulz M, da Silva Campelo Borges G, Gonzaga LV, Oliveira Costa AC, Fett R (2016) Juçara fruit (Euterpe edulis Mart.): sustainable exploitation of a source of bioactive compounds. Food Res Int 89:14–26. https://doi.org/10.1016/j.foodres.2016.07.027
CAS
Article
PubMed
Google Scholar
Stace CA (2005) Plant taxonomy and biosystematics - does DNA provide all the answers? Taxon 54:999–1007. https://doi.org/10.2307/25065484
Article
Google Scholar
Starr JR, Harris SA, Simpson DA (2004) Phylogeny of the unispicate taxa in Cyperaceae Tribe Cariceae I: generic relationships and evolutionary scenarios. Syst Bot 29:528–544
Article
Google Scholar
Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14. https://doi.org/10.1093/nar/gkl938
CAS
Article
PubMed
Google Scholar
Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109
CAS
Article
Google Scholar
Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737. https://doi.org/10.1043/02-64.1
Article
Google Scholar
Uncu AT, Uncu AO, Frary A, Doganlar S (2017) Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Food Chem 221:1026–1033. https://doi.org/10.1016/j.foodchem.2016.11.059
CAS
Article
PubMed
Google Scholar
Wetters S, Horn T, Nick P (2018) Goji who? Morphological and DNA based authentication of a “superfood”. Front Plant Sci 9:1–14. https://doi.org/10.3389/fpls.2018.01859
Article
Google Scholar
Yamaguchi KKDL, Pereira LFR, Lamarão CV et al (2015) Amazon acai: chemistry and biological activities: a review. Food Chem 179:137–151
CAS
Article
Google Scholar
Zhao ML, Song Y, Ni J, Yao X, Tan YH, Xu ZF (2018) Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-27090-0
CAS
Article
Google Scholar
Zhao Y, Pan B, Zhang M (2019) Phylogeography and conservation genetics of the endangered Tugarinovia mongolica (Asteraceae) from Inner Mongolia, Northwest China. PLoS One 14:1–14. https://doi.org/10.1371/journal.pone.0211696
CAS
Article
Google Scholar