Development and Application of an Optical Biosensor Immunoassay for Aflatoxin M1 in Bovine Milk

Abstract

An automated optical biosensor-based immunoassay exploiting surface plasmon resonance detection for the quantitation of aflatoxin M1 (AFM1) in milk and milk powders is described. A monoclonal antibody and an immobilized protein–AFM1 conjugate are utilized in a simple inhibition format following aqueous extraction and immunoaffinity clean-up of the sample, thereby avoiding the need for signal amplification techniques. The sensor surface is stable over multiple regeneration cycles, and the technique yields a method detection limit of 0.1 ng g−1, which is five times lower than the European Commission maximum residue limit. The described antibody-based biosensor technique provides the advantages of quantitative data, automation, and real-time and non-labeled detection of AFM1. The method therefore facilitates routine quantitative threshold-level screening for the identification of potential non-compliance of AFM1 content prior to confirmatory analysis by reference chromatographic methods and may be considered to complement the enzyme-linked immunosorbent assay technique.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. AOAC (2005) AOAC Official Method 2000.08. Aflatoxin M1 in liquid milk. Immunoaffinity column by liquid chromatography. In: Official methods of analysis of AOAC International, 18th edn. AOAC, Gaithersburg, MD

  2. Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49–S52

    PubMed  PubMed Central  Google Scholar 

  3. Benkerroum N (2016) Mycotoxins in dairy products: a review. Int Dairy J 62:63–75. https://doi.org/10.1016/j.idairyj.2016.07.002

    CAS  Article  Google Scholar 

  4. Campagnollo FB, Ganev KC, Khaneghah AM, Portela JB, Cruz AG, Granato D, Corassin CH, Oliveira CAF, Sant'Ana AS (2016) The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: a review. Food Control 68:310–329. https://doi.org/10.1016/j.foodcont.2016.04.007

    CAS  Article  Google Scholar 

  5. Daly SJ, Keating GJ, Dillon PP, Manning BM, O'Kennedy R, Lee HA, Morgan MRA (2000) Development of surface plasmon resonance-based immunoassy for aflatoxin B1. J Agric Food Chem 48:5097–5104. https://doi.org/10.1021/jf9911693

    CAS  Article  PubMed  Google Scholar 

  6. EU Commission (2014) Commission Regulation (EU) No 519/2014 of 16 May 2014 amending Regulation (EC) No 401/2006 as regards methods of sampling of large lots, spices and food supplements, performance criteria for T-2, HT-2 toxin and citrinin and screening methods of analysis. Off J Eur Union L147:29–43

    Google Scholar 

  7. Goode JA, Rushworth JVH, Millner PA (2015) Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31:6267–6276. https://doi.org/10.1021/la503533g

    CAS  Article  PubMed  Google Scholar 

  8. Guider R, Gandolfi D, Chalyan T, Pasquardini L, Samusenko A, Pucker G, Pederzolli C, Pavesi L (2015) Design and optimization of SiON ring resonator-based biosensors for aflatoxin M1 detection. Sensors 15:17300–17312. https://doi.org/10.3390/s150717300

    CAS  Article  PubMed  Google Scholar 

  9. Horwitz W, Albert R (2006) The Horwitz ratio (HorRat): a useful index of method performance with respect to precision. J AOAC Int 89:1095–1109

    CAS  PubMed  Google Scholar 

  10. Iqbal SZ, Jinap S, Pirouz AA, Faizal AR (2015) Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: a review. Trends Food Sci Technol 46:110–119. https://doi.org/10.1016/j.tifs.2015.08.005

    CAS  Article  Google Scholar 

  11. Karczmarczyk A, Dubiak-Szepietowska M, Vorobii M, Rodriguez-Emmenegger C, Dostálek J, Feller K-H (2016) Sensitive and rapid detection of aflatoxin M1 in milk utilizing enhanced SPR and p(HEMA) brushes. Biosens Bioelectron 81:159–165. https://doi.org/10.1016/j.bios.2016.02.061

    CAS  Article  PubMed  Google Scholar 

  12. Ketney O, Santini A, Oancea S (2017) Recent aflatoxin survey data in milk and milk products: a review. Int J Dairy Technol 70:320–331. https://doi.org/10.1111/1471-0307.12382

    CAS  Article  Google Scholar 

  13. Klingelhöfer D, Zhu Y, Braun M, Bendels MHK, Brüggmann D, Groneberg DA (2018) Aflatoxin—publication analysis of a global health threat. Food Control 89:280–290. https://doi.org/10.1016/j.foodcont.2018.02.017

    CAS  Article  Google Scholar 

  14. Li W, Powers S, Dai SY (2014) Using commercial immunoassay kits for mycotoxins: “joys and sorrows”. World Mycotoxin J 7:417–430. https://doi.org/10.3920/WMJ2014.1715

    CAS  Article  Google Scholar 

  15. Maragos CM (2004) Emerging technologies for mycotoxin detection. J Toxicol Toxin Rev 23:317–344. https://doi.org/10.1081/TXR-200027859

    CAS  Article  Google Scholar 

  16. Maragos CM (2016) Multiplexed biosensors for mycotoxins. J AOAC Int 99:849–860. https://doi.org/10.5740/jaoacint.16-0112

    CAS  Article  PubMed  Google Scholar 

  17. McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:75–92. https://doi.org/10.1007/s00216-011-5685-9

    CAS  Article  PubMed  Google Scholar 

  18. Mohammadi H (2011) A review of aflatoxin M1, milk, and milk products. In: Guevara-Gonzalez RG (ed) aflatoxins – biochemistry and molecular biology. InTech, London, pp 397–414 Available from: https://www.intechopen.com/books/aflatoxins-biochemistry-and-molecular-biology/a-review-of-aflatoxin-m1-milk-and-milk-products. Accessed 22 Feb 2019

    Google Scholar 

  19. Shephard GS (2016) Current status of mycotoxin analysis: a critical review. J AOAC Int 99:842–848. https://doi.org/10.5740/jaoacint.16-0111

    CAS  Article  PubMed  Google Scholar 

  20. Situ C, Wylie ARG, Douglas A, Elliott CT (2008) Reduction of severe bovine serum associated matrix effects on carboxymethylated dextran coated biosensor surfaces. Talanta 76:832–836. https://doi.org/10.1016/j.talanta.2008.04.053

    CAS  Article  PubMed  Google Scholar 

  21. Su GCC (1998) A comparison of statistical and empirical detection limits. J AOAC Int 81:105–110

    CAS  Article  Google Scholar 

  22. Thompson CS, Traynor IM, Fodey TL, Faulkner DV, Crooks SRH (2017) Screening method for the detection of residues of amphenicol antibiotics in bovine, ovine and porcine kidney by optical biosensor. Talanta 172:120–125. https://doi.org/10.1016/j.talanta.2017.05.047

    CAS  Article  PubMed  Google Scholar 

  23. Vaisocherová H, Brynda E, Homola J (2015) Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal Bioanal Chem 407:3927–3953. https://doi.org/10.1007/s00216-015-8606-5

    CAS  Article  PubMed  Google Scholar 

  24. van der Gaag B, Spath S, Dietrich H, Stigter E, Boonzaaijer G, van Osenbruggen T, Koopal K (2003) Biosensors and multiple mycotoxin analysis. Food Control 14:251–254. https://doi.org/10.1016/S0956-7135(03)00008-2

    CAS  Article  Google Scholar 

  25. Vidal JC, Bonel L, Ezquerra A, Hernández S, Bertolín JR, Cubel C, Castillo JR (2013) Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens Bioelectron 49:146–158. https://doi.org/10.1016/j.bios.2013.05.008

    CAS  Article  PubMed  Google Scholar 

  26. Visentin J, Couzi L, Dromer C, Neau-Cransac M, Guidicelli G, Veniard V, Coniat KN, Merville P, Di Primo C, Taupin J-L (2018) Overcoming non-specific binding to measure the active concentration and kinetics of serum anti-HLA antibodies by surface plasmon resonance. Biosens Bioelectron 117:191–200. https://doi.org/10.1016/j.bios.2018.06.013

    CAS  Article  PubMed  Google Scholar 

  27. Wang Y, Dostálek J, Knoll W (2009) Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk. Biosens Bioelectron 24:2264–2267. https://doi.org/10.1016/j.bios.2008.10.029

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Terry Cooney (Analytica Laboratories Ltd., Hamilton, New Zealand) for LC–tandem mass spectrometry analyses and the support and encouragement of Dr. Robert Crawford and Fonterra Co-operative Group Ltd. throughout this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harvey E. Indyk.

Ethics declarations

Conflict of Interest

Harvey Indyk declares that he has no conflict of interest. Sowmya Chetikam declares that she has no conflict of interest. Brendon Gill declares that he has no conflict of interest. Jackie Wood declares that she has no conflict of interest. David Woollard declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Indyk, H.E., Chetikam, S., Gill, B.D. et al. Development and Application of an Optical Biosensor Immunoassay for Aflatoxin M1 in Bovine Milk. Food Anal. Methods 12, 2630–2637 (2019). https://doi.org/10.1007/s12161-019-01621-5

Download citation

Keywords

  • Aflatoxin M1
  • Milk
  • Biosensor
  • Surface plasmon resonance
  • Immunoassay