Skip to main content
Log in

Determination of Multiclass Pesticides Residues in Corn by QuEChERS and Capillary Electrophoresis Tandem Mass Spectrometry

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

The development and validation of a capillary electrophoresis–tandem mass spectrometry method for the determination of nine pesticides residues in corn samples is presented. The residues of thiabendazole, aminocarb, imazalil, atrazine, metazachlor, metoxuron, carbofuran, metosulam, and imazapyr have been extracted from corn samples using QuEChERS based extraction procedure. The optimal separation of investigated pesticides was achieved in less than 6 min with 0.1 mol L−1 formic acid (pH 2.4) as the background electrolyte using a poly(vinyl alcohol)-coated capillary. The coefficient of determination (r2), in the range of 5 to 200 μg L−1, were greater than 0.995. Recoveries ranged from 70% to 110%. Relative standard deviations were lower than 7.8%. The limits of detection (LODs) ranged from 0.03 to 0.28 μg kg−1, while the limits of quantitation (LOQs) ranged from 0.10 to 0.93 μg kg−1, which are several times lower than the established maximum residue limits. These results suggest that the method attends the international legislation for all the analyzed pesticides in corn and that it has the potential to be successfully applied to other food matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    CAS  PubMed  Google Scholar 

  • Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Bicchi C, Balbo C, Binello A, D'Amato A (1996) HPLC-UV determination of pesticide residues at 0.01 ppm in apple and pear pulp used for baby food. J High Resolut Chromatogr 19:105–110

    Article  CAS  Google Scholar 

  • Bol’shakova DS, Amelin VG (2016) Determination of pesticides in environmental materials and food products by capillary electrophoresis. J Anal Chem 71:965–1013

    Article  CAS  Google Scholar 

  • Burgi DS, Chien RL (1991) Optimization in sample stacking for high-performance capillary electrophoresis. Anal Chem 63:2042–2047

    Article  CAS  Google Scholar 

  • Capehart T (2018) Corn—background. In E. R. S. United States Department of Agriculture. https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance/. Accessed Apr 2019

  • Chang PL, Hsieh MM, Chiu TC (2016) Recent advances in the determination of pesticides in environmental samples by capillary electrophoresis. Int J Environ Res Public Health 13:409–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chicharro M, Zapardiel A, Bermejo E, Sánchez A, González R (2004) Multiresidue analysis of pesticides in environmental waters by capillary electrophoresis using simultaneous UV and electrochemical detection. Electroanalysis 16:311–318

    Article  CAS  Google Scholar 

  • Chu XG, Hu XZ, Yao HY (2005) Determination of 266 pesticide residues in apple juice by matrix solid-phase dispersion and gas chromatography–mass selective detection. J Chromatogr A 1063:201–210

    Article  CAS  PubMed  Google Scholar 

  • da Silva CL, de Lima EC, Tavares MFM (2003) Investigation of preconcentration strategies for the trace analysis of multi-residue pesticides in real samples by capillary electrophoresis. J Chromatogr A 1014:109–116

    Article  CAS  PubMed  Google Scholar 

  • Daniel D, dos Santos VB, Vidal DT, do Lago CL (2015) Determination of halosulfuron-methyl herbicide in sugarcane juice and tomato by capillary electrophoresis-tandem mass spectrometry. Food Chem 175:82–84

    Article  CAS  PubMed  Google Scholar 

  • do Lago CL, Vidal DTR, Francisco KJM, dos Santos VB (2014) A simple approach to compensate the suction caused by the electrospray ionization source in capillary electrophoresis-mass spectrometry systems. Electrophoresis 35:2412–2416

    Article  CAS  PubMed  Google Scholar 

  • Elbashir AA, Aboul-Enein HY (2015) Separation and analysis of triazine herbicide residues by capillary electrophoresis. Biomed Chromatogr 29:835–842

    Article  CAS  PubMed  Google Scholar 

  • Europe Union (2012) Commission regulation (EC) 396/2005 of the European parliament and of the council of 23rd February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending council directive 91/414/EEC. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:273:0001:0075:EN:PDF. Accessed Apr 2019

  • Ferrer I, García-Reyes JF, Mezcua M, Thurman EM, Fernánndez-Alba AR (2005) Multi-residue pesticide analysis in fruits and vegetables by liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 1082:81–90

    Article  CAS  PubMed  Google Scholar 

  • Furey A, Moriarty M, Bane V, Kinsella B, Lehane M (2013) Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 115:104–122

    Article  CAS  PubMed  Google Scholar 

  • Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217:3929–3937

    Article  CAS  PubMed  Google Scholar 

  • Hernandez F, Cervera MI, Portoles T, Beltran J, Pitarch E (2013) The role of GC-MS/MS with triple quadrupole in pesticide residue analysis in food and the environment. Anal Methods 5:5875–5894

    Article  CAS  Google Scholar 

  • Hernández-Borges J, Frías-García S, Cifuentes A, Rodríguez-Delgado MA (2004) Pesticide analysis by capillary electrophoresis. J Sep Sci 27:947–963

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Borges J, Rodriguez-Delgado MA, Garcia-Montelongo FJ, Cifuentes A (2005) Analysis of pesticides in soy milk combining solid-phase extraction and capillary electrophoresis-mass spectrometry. J Sep Sci 28:948–956

    Article  CAS  PubMed  Google Scholar 

  • Hinsmann P, Arce L, Ríos A, Valcárcel M (2000) Determination of pesticides in waters by automatic on-line solid-phase extraction-capillary electrophoresis. J Chromatogr A 866:137–146

    Article  CAS  PubMed  Google Scholar 

  • Hogendoorn E, van Zoonen P (2000) Recent and future developments of liquid chromatography in pesticide trace analysis. J Chromatogr A 892:435–453

    Article  CAS  PubMed  Google Scholar 

  • International Maximum Residue Level Database (2018) www.bcglobalportal.com/. Accessed Apr 2019

  • Islam K, Chand R, Han D, Kim YS (2015) Microchip capillary electrophoresis based electroanalysis of triazine herbicides. Bull Environ Contam Toxicol 94:41–45

    Article  CAS  PubMed  Google Scholar 

  • Juan-Garcia A, Font G, Pico Y (2005) Quantitative analysis of six pesticides in fruits by capillary electrophoresis-electrospray-mass spectrometry. Electrophoresis 26:1550–1561

    Article  CAS  PubMed  Google Scholar 

  • Juan-García A, Font G, Juan C, Picó Y (2010) Pressurised liquid extraction and capillary electrophoresis–mass spectrometry for the analysis of pesticide residues in fruits from Valencian markets, Spain. Food Chem 120:1242–1249

    Article  CAS  Google Scholar 

  • Kumar A, Malik AK, Pico Y (2010) Sample preparation methods for the determination of pesticides in foods using CE-UV/MS. Electrophoresis 31:2115–2125

    Article  CAS  PubMed  Google Scholar 

  • Lesueur C, Knittl P, Gartner M, Mentler A, Fuerhacker M (2008) Analysis of 140 pesticides from conventional farming foodstuff samples after extraction with the modified QuECheRS method. Food Control 19:906–914

    Article  CAS  Google Scholar 

  • Lozano A, Rajski Ł, Belmonte-Valles N, Uclés A, Uclés S, Mezcua M, Fernández-Alba AR (2012) Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: validation and pilot survey in real samples. J Chromatogr A 1268:109–122

    Article  CAS  PubMed  Google Scholar 

  • Paya P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, Barba A (2007) Analysis of pesticide residues using the quick easy cheap effective rugged and safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem 389:1697–1714

    Article  CAS  PubMed  Google Scholar 

  • Pico Y, Rodriguez R, Manes J (2003) Capillary electrophoresis for the determination of pesticide residues. Trends Anal Chem 22:133–151

    Article  CAS  Google Scholar 

  • Picó Y, Blasco C, Font G (2004) Environmental and food applications of LC–tandem mass spectrometry in pesticide-residue analysis: an overview. Mass Spectrom Rev 23:45–85

    Article  CAS  PubMed  Google Scholar 

  • Rojano-Delgado AM, Luque de Castro MD (2014) Capillary electrophoresis and herbicide analysis: present and future perspectives. Electrophoresis 35:2509–2519

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Hernández L, Hernández-Domínguez D, Bernal J, Neusüß C, Martín MT, Bernal JL (2014) Capillary electrophoresis–mass spectrometry as a new approach to analyze neonicotinoid insecticides. J Chromatogr A 1359:317–324

    Article  CAS  PubMed  Google Scholar 

  • Simo C, Barbas C, Cifuentes A (2005) Capillary electrophoresis-mass spectrometry in food analysis. Electrophoresis 26:1306–1318

    Article  CAS  PubMed  Google Scholar 

  • Thompson M, Ellison Stephen LR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis. Pure Appl Chem 74:835–855

    Article  CAS  Google Scholar 

  • van der Hoff GR, van Zoonen P (1999) Trace analysis of pesticides by gas chromatography. J Chromatogr A 843:301–322

    Article  PubMed  Google Scholar 

  • Winter CK (1992) Pesticide tolerances and their relevance as safety standards. Regul Toxicol Pharmacol 15:137–150

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Luan F, Liu H, Gao Y (2015) Dispersive liquid–liquid microextraction combined with non-aqueous capillary electrophoresis for the determination of imazalil, prochloraz and thiabendazole in apples, cherry tomatoes and grape juice. J Sci Food Agric 95:745–751

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudimir Lucio do Lago.

Ethics declarations

Funding

This work was supported by FAPESP (grant 2012/06642-1). C.L.L. thanks CNPq (researcher fellowship 304415/2013-8).

Conflict of Interest

Claudimir Lucio de Lago declares no conflicts of interest. Daniela Daniel is an employee from Agilent Technology.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent is not applicable in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, D., do Lago, C.L. Determination of Multiclass Pesticides Residues in Corn by QuEChERS and Capillary Electrophoresis Tandem Mass Spectrometry. Food Anal. Methods 12, 1684–1692 (2019). https://doi.org/10.1007/s12161-019-01501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-019-01501-y

Keywords

Navigation