Food Analytical Methods

, Volume 11, Issue 10, pp 2943–2960 | Cite as

Magnetic Resonance Imaging for Quality Evaluation of Fruits: a Review

  • R. K. Srivastava
  • Sekhar Talluri
  • Sk. Khasim Beebi
  • B Rajesh Kumar


This article is a review of the magnetic resonance (MR)-based technologies that have been used for non-destructive quality assessment of fruits. The potential of these MR-based methods for commercial applications such as sorting or labelling is discussed. Although nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) have been demonstrated to be quite effective for non-destructive characterization and quality evaluation of fruits, they have found only limited applications in current industrial and commercial applications. The limitations of the current MRI methodologies, and the technologies under development that have the potential to overcome these limitations, are also discussed. This review is limited to applications of MRI/NMR to non-invasive studies of fruits, with potential for industrial applications, and does not include applications of MRI/ NMR to vegetables, cereals and processed food items.


Magnetic resonance imaging NMR spectroscopy Fruit quality Relaxation time Quality assessment 



Artificial neutral network


Chemical shift selective


Complementary metal-oxide semiconductor


Carr Purcell Meiboom Gill


Diffusion coefficient


Dimensional histogram variance thresholding


Fast Low Angle Shot


Field of view


Gradient magnitude in the x-direction


Gradient magnitude in the y-direction


Gradient magnitude in the z-direction




Inversion recovery


Mean absolute error


Magnetic resonance imaging


Magnetic resonance imaging logging


Magnetic resonance spectroscopic imaging


Near infrared


Nuclear magnetic resonance


Proton density


Pulsed field gradient spin echo


Quality assurance/quality control


Radio frequency


Relative humidity


Relative water content


Superconducting quantum interference based detector


Soluble solids content


Spin-lattice (longitudinal) relaxation time


Spin-spin (transverse) relaxation time


Spin-spin relaxation rate


Echo delay


Repetition time (time between repetitive application of pulse sequence)


Compliance with Ethical Standards

Conflict of Interest

R. K. Srivastava declares that he has no conflict of interest. S. Talluri declares that he has no conflict of interest. Sk. Khasim Beebi declares that he has no conflict of interest. B. Rajesh Kumar declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent is not obtained from all individual participants included in the study.


  1. Abbott JA (1999) Quality measurement of fruits and vegetables. Postharvest Biol. Technol. 15(3):207–225. CrossRefGoogle Scholar
  2. Abbott JA, Lu R, Upchurch BL, Stroshine RL (1997) Technologies for non-destructive quality evaluation of fruits and vegetables. In: Janicke J (ed) Horticultural reviews 20. John Wiley & Sons, Inc., Oxford. CrossRefGoogle Scholar
  3. Allen DF, Crary S, Freedman R, Andreani M, Klopf W, Badry R, Flaum C, Kenyon WE, Kleinberg RL, Gossenberg R, Horkowitz D, Logan P, Singer J, White J (1997) How to use borehole nuclear magnetic resonance. Schlumberger Oilfield Rev 9(2):34–57 Google Scholar
  4. Andaur JE, Guesalaga AR, Agosin EE, Guarini MW, Irarrázaval P (2004) Magnetic resonance imaging for non-destructive analysis of wine grapes. J Agric Food Chem 52(2):165–170. CrossRefPubMedGoogle Scholar
  5. Arendse E, Fawole OA, Magwaza LS, Opara UL (2018) Non-destructive prediction of internal and external quality attributes of fruit with thick rind: a review. J Food Eng 217:11–23. CrossRefGoogle Scholar
  6. Barreiro P, Ruiz-Cabello J, Fernández-Valle ME, Ortiz C, Ruiz-Altisent M (1999) Mealiness assessment in apples using MRI techniques. Magn Reson Imaging 17(2):275–281. CrossRefPubMedGoogle Scholar
  7. Barreiro P, Ortiz C, Ruiz-Cabello M, Fernández-Valle ME, Recasens I, Asensio M (2000) Mealiness assessment in apples and peaches using MRI techniques. Magn Reson Imaging 18(9):1175–1181. CrossRefPubMedGoogle Scholar
  8. Barreiro P, Zheng C, Sun DW, Hernández-Sánchez N, Pérez-Sánchez JM, Ruiz-Cabello J (2008) Non-destructive seed detection in mandarins: comparison of automatic threshold methods FLASH and COMSPIRA MRIs. Postharvest Biol Technol 47(2):189–198. CrossRefGoogle Scholar
  9. Blažková J, Hlušičková I, Blažek J (2002) Fruit weight, firmness and soluble solids content during ripening of Karešova Cv. Sweet cherry. Hort Sci (Prague) 29(3):92–98 CrossRefGoogle Scholar
  10. Bloch F, Hansen WW, Packard M (1946) Nuclear induction. Phys Rev 69(3–4):127. CrossRefGoogle Scholar
  11. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679. CrossRefGoogle Scholar
  12. Blumich B (2016) Introduction to compact NMR: a review of methods. Trends Anal Chem 83:2–11. CrossRefGoogle Scholar
  13. Börnert P, Aldefeld B (2008) Principle of whole-body continuously moving table MRI. J Magn Reson Imaging 28(1):1–12. CrossRefPubMedGoogle Scholar
  14. Bottomley PA (1982) NMR imaging techniques and applications: a review. Rev Sci Instrum 53:1319. CrossRefPubMedGoogle Scholar
  15. Bottomley PA, Griffiths JR (eds) (2016) Handbook of magnetic resonance spectroscopy in vivo: MRS theory and applications., eMagRes. Wiley, Hoboken Google Scholar
  16. Bourne MR, Banos C, Davies JB, Banati R, Henriod R (2012) Non-destructive assessment of gamma irradiation on internal mango quality. Image courtesy of the Australian Nuclear Science and Technology Organisation (ANSTO). ACS013091.
  17. Brant WE, de Lange EE (eds) (2012) Essentials of body MRI. Oxford University Press, Oxford Google Scholar
  18. Brown RW, YCN C, Haacke EM, Thompson MR, Venkatesan R (eds) (2014) Magnetic Resonance Imaging: Physical principles and sequence design, 2nd edn. Wiley, Hoboken Google Scholar
  19. Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33(2):103–119. CrossRefGoogle Scholar
  20. Burdon J, Clark CJ (2001) Effect of postharvest water loss on 'Hayward' kiwifruit water status. Postharvest Biol Technol 22(3):215–225. CrossRefGoogle Scholar
  21. Butz P, Hofmann C, Tauscher B (2005) Recent developments in non-invasive techniques for fresh fruit and vegetable internal quality analysis. J Food Sci 70(9):131–141. CrossRefGoogle Scholar
  22. Bydder GM, Young IR (1985) MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 9(4):659–675 CrossRefPubMedGoogle Scholar
  23. Callaghan PT, Clark CJ, Forde LC (1994) Use of static and dynamic NMR microscopy to investigate the origins of contrast in images of biological tissues. Biophys Chem 50:225–235. CrossRefPubMedGoogle Scholar
  24. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638. CrossRefGoogle Scholar
  25. Chayaprasert W, Stroshine R (2005) Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor. Postharvest Biol Technol 36(3):291–301. CrossRefGoogle Scholar
  26. Chen P, Sun Z (1991) A review of non-destructive methods for quality evaluation and sorting of agricultural products. J Agric Eng Res 49:85–98. CrossRefGoogle Scholar
  27. Chen P, McCarthy MJ, Kauten R (1989) NMR for internal quality evaluation of fruits and vegetables. Trans Am Soc Agric Eng (ASAE) 32(5):1747–1753. CrossRefGoogle Scholar
  28. Cheng YC, Lin TT, Chou CY, Chen JH (2008) Physico-chemical analysis of internal bruise of selected fruits using chemical shift imaging. Conference, Providence, Rhode Island, 084545.
  29. Cho BK, Chayaprasert W, Stroshine RL (2008) Effect of internal browning and watercore on low field (5.4 MHz) proton magnetic resonance measurement of T2 value of whole apples. Postharvest Biol Technol 47:81–89. CrossRefGoogle Scholar
  30. Chudek JA, Hunter G (2002) Stray field (STRAFI) and single point (SPI) magnetic resonance imaging. Annu Rep NMR Spectrosc 45:151–187. CrossRefGoogle Scholar
  31. Clark CJ, Burmeister DM (1999) Magnetic resonance imaging of Browning development in 'Braeburn' apple during controlled atmosphere storage under high CO2. HortSci 34(5):915–919 Google Scholar
  32. Clark CJ, MacFall JS (2003) Quantitative magnetic resonance imaging of ‘Fuyu’ persimmon fruit during development and ripening. Magn Reson Imaging 21(6):679–685. CrossRefPubMedGoogle Scholar
  33. Clark CJ, Hockings PD, Joyce DC, Mazucco RA (1997) Application of magnetic resonance imaging to pre- and post-harvest studies of fruits and vegetables. Postharvest Biol Technol 11(1):1–21. CrossRefGoogle Scholar
  34. Clark CJ, Drummond LN, MacFall JS (1998a) Quantitative NMR imaging of kiwifruit (Actinidia deliciosa) during growth and ripening. J Sci Food Agric 78(3):349–358.<349::AID -JSFA125>3.0.CO;2-XGoogle Scholar
  35. Clark CJ, MacFall JS, Bieleski RL (1998b) Loss of watercore from ‘Fuji’ apple observed by magnetic resonance imaging. Sci Hortic 73(4):213–227. CrossRefGoogle Scholar
  36. Clarke J, Hatridge M, Möble M (2007) SQUID-detected magnetic resonance imaging in microtesla fields. Ann Rev Biomed Eng 9:389–413. CrossRefGoogle Scholar
  37. Coates GR, Xiao L, Prammer MG (eds) (1999) NMR Logging, Principles and Applications, 1st edn. Halliburton Energy Services, (1–234), Gulf Publishing Company, Houston Google Scholar
  38. Colnago LA, Andrade FD, Souza AA, Azeredo RBV, Lima AA, Cerioni LM, Osan TM, Pusiol DJ (2014) Why is inline NMR rarely used as industrial sensor? Challenges and opportunities. Chem Eng Technol 37(2):191–203. CrossRefGoogle Scholar
  39. Constantinesco A, Choquet P, Cauffet G, Fournier JM, Ravier S, Drillon JM, Aubert G (1998) Low-field dedicated and desktop magnetic resonance imaging systems for agricultural and food applications. Magn Reson Chem 35:S69–S75.<S69::AID-OMR198>3.0.CO;2-5 CrossRefGoogle Scholar
  40. Danieli E, Perlo J, Blumich B, Casanova F (2010) Small magnets for portable NMR spectrometers. Angew Chem Int Ed 49(24):4133–4135. CrossRefGoogle Scholar
  41. Dean RJ, Stait-Gardner T, Clarke SJ, Rogiers SY, Bobek G, Price WS (2014) Use of diffusion magnetic resonance imaging to correlate the developmental changes in grape berry tissue structure with water diffusion patterns. Plant Methods 10(1):35. CrossRefPubMedGoogle Scholar
  42. Dean RJ, Bobek G, Stait-Gardner T, Clarke SJ, Rogiers SY, Price WS (2016) Time-course study of grape berry split using diffusion magnetic resonance imaging. Aust J Grape Wine Res 22:240–244. CrossRefGoogle Scholar
  43. Defraeye T, Lehmann V, Carolin DG, Herremans HE, Verboven P, Verlinden BE, Nicolai BM (2013) Application of MRI for tissue characterisation of ‘Braeburn’ apple. Postharvest Biol Technol 75:96–105. CrossRefGoogle Scholar
  44. Dickinson WC (1950) Dependence of the F19 nuclear resonance position on chemical compound. Phys Rev 77:736–737. CrossRefGoogle Scholar
  45. Dubey SR, Jalal AS (2015) Application of image processing in fruit and vegetable analysis: a review. J Intell Syst 24(4):405–424. CrossRefGoogle Scholar
  46. Dull GG, Birth GS (1989) Nondestructive evaluation of fruit quality: use of near-infrared spectrophotometery to measure soluble solids in intact honeydew melons. HortSci 24:754–758 Google Scholar
  47. Eidmann G, Savelsberg R, Blümler P, Blümich B (1996) The NMR mouse, a mobile universal surface explorer. J Magn Reson Ser A 122(1):104–109. CrossRefGoogle Scholar
  48. Elizabeth JM, Roy EM (1993) Respiration rate, internal atmosphere, and ethanol and acetaldehyde accumulation in heat-treated mango fruit. Postharvest Biol Technol 3(1):77–86. CrossRefGoogle Scholar
  49. Ernst RR, Anderson WA (1966) Application of Fourier transforms spectroscopy to magnetic resonance. Rev Sci Instrum 37:93–102. CrossRefGoogle Scholar
  50. Evans SD, Brambill A, Lane DM, Torreggiani D, Hall LD (2002) Magnetic resonance imaging of strawberry (Fragaria vesca) slices during osmotic dehydration and air drying. LWT - Food Sci Technol 35(2):177–184. CrossRefGoogle Scholar
  51. Farhat IA, Belton PS, Webb GA (eds) (2007) Magnetic resonance in food science: from molecules to man. RSC Publishing, Cambridge Google Scholar
  52. Faust M, Wang PC, Maas J (2010) The use of magnetic resonance imaging in plant science. Hortic Rev 20:225–266. CrossRefGoogle Scholar
  53. Fuchs J, Neuberger T, Rolletschek H, Schiebold S, Nguyen TH, Borisjuk N, Borner A, Melkus G, Jakob P, Borisjuk L (2013) A noninvasive platform for imaging and quantifying oil storage in submillimeter tobacco seed. Plant Physiol 161(2):573–593. CrossRefGoogle Scholar
  54. Fukushima E, Roeder SPW (1993) Experimental pulse NMR: a nuts and bolts approach. Westview Press, Boulder Google Scholar
  55. Galed G, Fernandez-Valle ME, Martinez A, Heras A (2004) Application of MRI to monitor the process of ripening and decay in citrus treated with chitosan solutions. Magn Reson Imaging 22(1):127–137. CrossRefPubMedGoogle Scholar
  56. Gamble GR (1994) Non-invasive determination of freezing effects in blueberry fruit tissue by magnetic resonance imaging. J Food Sci 59(3):571–573. CrossRefGoogle Scholar
  57. Geya Y, Kimura T, Fujisaki H, Terada Y, Kose K, Haishi T, Gemma H, Sekozawa Y (2013) Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system. J Magn Reson 226:45–51. CrossRefPubMedGoogle Scholar
  58. Glidewell SM, Williamson B, Duncan GH, Chudek JA, Hunter G (1999) The development of blackcurrant fruit from flower to maturity: a comparative study by 3D nuclear magnetic resonance (NMR) micro-imaging and conventional histology. New Phytol 141(1):85–98. CrossRefGoogle Scholar
  59. Gonzalez JJ, Valle RC, Bobroff S, Biasi WV, Mitcham EJ, MacCarthy MJ (2001) Detection and monitoring of internal browning in 'Fuji' apples using MRI. Postharvest Biol Technol 22(2):179–188. CrossRefGoogle Scholar
  60. Goodman BA, Williamson B, Simpson EJ, Chudek JA, Hunter G, Prio DAM (1996) High field nmr microscopic imaging of cultivated strawberry fruit. Magn Reson Imaging 14(2):187–196. CrossRefPubMedGoogle Scholar
  61. Goulao LF, Oliveira CM (2008) Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends in Food Sci. Technol. 19:4-25.
  62. Gromova M, Guilermo A, Bayle PA, Bardet M (2016) In situ studies of plant seeds using 13C or 1H MAS NMR and 1H PFG NMR approaches. In: Webb G (ed) Modern Magnetic Resonance. Springer, Berlin, pp 1–16. CrossRefGoogle Scholar
  63. Gross D, Zick K, Guthausen G (2017) Recent MRI and diffusion studies of food structures. Annu Rep NMR Spectrosc 90:145–197. CrossRefGoogle Scholar
  64. Gunasekaran S (ed) (2000) Non-destructive food evaluation: Techniques to analyze properties and quality. Food science series, 1st edn. CRC Press, Boca Raton Quality/Gunasekaran/ p/book/9780824704537 Google Scholar
  65. Haishi T, Koizumi H, Arai T, Koizumi M, Kano H (2011) Rapid detection of infestation of apple fruits by the peach fruit moth, Carposina sasakii Matsumura, larvae using a 0.2-T dedicated magnetic resonance imaging apparatus. Appl Magn Reson 41(1):1–18. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hamilton J, Franson D, Seiberlich N (2017) Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc 101:71–95. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hancock J, Callow P, Serce S, Hanson E, Beaudry R (2008) Effect of cultivar, controlled atmosphere storage, and fruit ripeness on the long-term storage of highbush blueberries. HortTechnology 18(2):199–205 Google Scholar
  68. Hegde SS, Zhang Y, Bottomley PA (2015) Acceleration and motion-correction techniques for high-resolution intravascular MRI. Magn Reson Med 74(2):452–461. CrossRefPubMedGoogle Scholar
  69. Heidenreich M, Spyros A, Kockenbeger W, Chandrakumar N, Bowtell R, Kimmich R (2008) CYCLCROP mapping of 13C labelled compounds: perspectives in polymer science and plant physiology. Spatially Resolved Magnetic Resonance: Methods, Materials, Medicine, Biology, Rheology, Geology, Ecology, Hardware. Ed. Blumler P, Blumich B, Botto R, Fukushima E. pp.21–52.
  70. Hernández-Sánchez N, Barreiro P, Ruiz-Altisent M, Ruiz-Cabello J, Encarnación Fernández-Valle M (2004) Detection of freeze injury in oranges by magnetic resonance imaging of moving samples. Appl Magn Reson 26:431–445. CrossRefGoogle Scholar
  71. Hernandez-Sanchez N, Barreiro P, Ruiz-Cabello J (2006) On-line identification of seeds in mandarins with magnetic resonance imaging. Biosyst Eng 95(4):529–536. CrossRefGoogle Scholar
  72. Hernández-Sánchez N, Hills B, Barreiro BP, Marigheto N (2007) An NMR study on internal browning in pears. Postharvest Biol Technol 44(3):260–270. CrossRefGoogle Scholar
  73. Hills BP, Wright KM (2006) Motional relativity and industrial NMR sensors. J Magn Reson 178(2):193–205. CrossRefPubMedGoogle Scholar
  74. Hilschenz I, Ito Y, Natsukawa H, Oida T, Yamamoto T, Kobayashi T (2017) Remote detected low-field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil. J Magn Reson 274:89–94. CrossRefPubMedGoogle Scholar
  75. Ishida N, Ogawa H, Koizumi M, Kano H (1997) Ontogenic changes of the water status and accumulated soluble compounds in growing cherry fruits studied by NMR imaging. Magn Reson Chem 35(13):S22–S28.<S22::AID-OMR206>3.0.CO;2-5 CrossRefGoogle Scholar
  76. Jones M, Aptaker PS, Cox J, Gardiner BA, McDonald PJ (2012) A transportable magnetic resonance imaging system for in situ measurements of living trees: the tree hugger. J Magn Reson 218:133–140. CrossRefPubMedGoogle Scholar
  77. Joyce DC, Hockings PD, Mazucco RA, Shorter AJ, Brereton IM (1993) Heat treatment injury of mango fruit revealed by nondestructive magnetic resonance imaging. Postharvest Biol Technol 3(4):305–311. CrossRefGoogle Scholar
  78. Joyce DC, Hockings PD, Mazucco RA, Shorter AJ (2002) 1H-Nuclear magnetic resonance imaging of the ripening of 'Kensington Pride' mango fruit. Funct Plant Biol 29(7):873–879. CrossRefGoogle Scholar
  79. Keeler J (2013) Understanding NMR spectroscopy, 2nd edn. Wiley, Hoboken Google Scholar
  80. Khoshroo A, Keyhani A, Zoroofi RA, Rafiee S, Zamani Z, Alsharif MR (2009) Classification of pomegranate fruit using texture analysis of MR images. Agric Eng Int CIGR EJ XI:1182 Google Scholar
  81. Kimura T, Geya Y, Terada Y, Kose K, Haishi T, Gemma H, Sekozawa Y (2011) Development of a mobile magnetic resonance imaging system for outdoor tree measurements. Rev Sci Instrum 82(5):053704. CrossRefPubMedGoogle Scholar
  82. Kirtil E, Cikricki S, McCarthy MJ, Oztop MH (2017) Recent advances in time domain NMR and MRI sensors and their food applications. Curr Opin Food Sci 17:9–15. CrossRefGoogle Scholar
  83. Koizumi M, Naito S, Ishida N, Haishi T, Kano H (2008) A dedicated MRI for food science and agriculture. Food Sci Technol Res 14(1):74–82. CrossRefGoogle Scholar
  84. Kojima S, Shinohara H, Hashimoto T, Hirata M, Ueno E (2015) Iterative image reconstruction that includes a total variation regularization for radial MRI. Radiol Phys Technol 8(2):295–304. CrossRefPubMedGoogle Scholar
  85. Kumar A, Welti D, Ernst RR (1975) NMR Fourier Zeugmatography. J Magn Reson 18(1):69–83. CrossRefGoogle Scholar
  86. Lammertyn J, Aerts M, Verlindern BE, Schotmans W, Nicolaï BM (2000) Logistic regression of factors influencing core breakdown in ‘Conference’ pears. Postharvest Biol Technol 20(1):25–37. CrossRefGoogle Scholar
  87. Lammertyn J, Dresselaers T, Van Hecke P, Jancsók P, Wevers M, Nicolaï BM (2003) MRI and X-ray CT study of spatial distribution of core breakdown in ‘conference’ pears. Magn Reson Imaging 21(7):805–815. CrossRefPubMedGoogle Scholar
  88. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191. CrossRefGoogle Scholar
  89. Letal J, Jirak D, Suderlova L, Hajek M (2003) MRI texture analysis of MR images during ripening and storage. LWT Food Sci Technol 36(7):719–727. CrossRefGoogle Scholar
  90. Liao SH, Wu PC (2017) A study of spin--lattice relaxation rates of glucose, fructose, sucrose and cherries using high-Tc SQUID-based NMR in ultralow magnetic fields. Supercond Sci Technol 30(08):084006. CrossRefGoogle Scholar
  91. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195. CrossRefPubMedGoogle Scholar
  92. Maas JL, Line MJ (1995) Nuclear magnetic resonance microimaging of strawberry flower buds and fruit. Hortscience 30(5):1090–1096 Google Scholar
  93. Marcone MF, Wang S, Albabish W, Nie S, Somnarain D, Hill A (2013) Diverse food based applications of nuclear magnetic resonance (NMR) technology. Food Res Int 51(2):729–747. CrossRefGoogle Scholar
  94. Marigheto N, Venturi L, Hiells B (2008) Two-dimensional NMR relaxation studies of apple quality. Postharvest Biol Technol 48(3):331–340. CrossRefGoogle Scholar
  95. Marvasti F (2012) Nonuniform sampling: theory and practice. Springer US. Kluwer Academic/Plenum Publishers, New York,
  96. Mazhar M, Joyce D, Cowin G, Brereton I, Hofman P, Collins R, Gupta M (2015) Non-destructive 1H-MRI assessment of flesh bruising in avocado (Persea americana m.) cv. hass. Postharvest Biol Technol 100:33–40. CrossRefGoogle Scholar
  97. Mazucco RA, Joyce DC, Hockings PD (1993) Magnetic resonance imaging applied to harvested mango fruit. Austral Postharvest Conf. C.S.I.R.O. Div. Horticulture 1119:355–358Google Scholar
  98. McCarthy MJ, Zion B, Chen P, Ablett S, Darke AH, Lilliford PJ (1995) Diamagnetic susceptibility changes in apple tissue after bruising. J Sci Food Agric 67(1):13–20. CrossRefGoogle Scholar
  99. McCarthy MJ, Zhang L, McCarthy KL, Coulthard T (2016) Status and future of magnetic resonance imaging sensors for in-line assessment and sorting of fruit. Acta Hortic (1119):121–126.
  100. McDonald PJ, Ciampi E, Keddie J, Heidenreich M, Kimmich R (1999) Magnetic-resonance determination of the spatial dependence of the droplet size distribution in teh cream layer of oil-in-water emulsions: evidence for the effects of depletion flocculation. Phys Rev E 59:874. CrossRefGoogle Scholar
  101. McDonald PJ, Aptaker PS, Mitchell J, Mulheron M (2007) A unilateral NMR magnet for sub-structure analysis in the built environment: the surface GARField. J Magn Reson 185(1):1–11. CrossRefPubMedGoogle Scholar
  102. Melado-Herreros A, Muñoz-García MA, Blanco A, Val J, Fernández-Valle ME, Barreiro P (2013) Assessment of watercore development in apples with MRI: effect of fruit location in the canopy. Postharvest Biol Technol 86:125–133. CrossRefGoogle Scholar
  103. Melado-Herreros A, Fernández-Valle ME, Barreiro P (2015) Non-destructive global and localized 2D T1/T2 NMR relaxometry to resolve microstructure in apples affected by Watercore. Food Bioprocess Technol 8(1):88–99. CrossRefGoogle Scholar
  104. Melkus G, Rolletschek H, Radchuk R, Fuchs J, Rutten T, Wobus U, Altmann T, Jakob P, Borisjuk L (2009) The metabolic role of legume endosperm: a non-invasive imaging study. Plant Physiol 151(3):1139–1154. CrossRefPubMedPubMedCentralGoogle Scholar
  105. Miki T, Saito K, Hayashi S, Kajikawa H, Shimada M, Ogawa R, Kawate Y, Ikegaya D, Kimura N, Takabatake K, Nishizawa T, Sugiura N, Suzuki M (1996) Nondestructive analysis of sugar content on watermelon using MRI device. Teion Kogaku 31:258–266. CrossRefGoogle Scholar
  106. Mitchell J, Chandrasekera TC, Gladden LF (2012) Numerical estimation of relaxation and diffusion distributions in two dimensions. Prog Nucl Magn Reson Spectrosc 62:34–50. CrossRefPubMedGoogle Scholar
  107. Mitchell J, Gladden LF, Chandrasekera TC, Fordham EJ (2014) Low-field permanent magnets for industrial process and quality control. Prog Nucl Magn Reson Spectrosc 76:1–60. CrossRefPubMedGoogle Scholar
  108. Mobli M, Stern AS, Hoch JC (2006) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182(1):96–105. CrossRefPubMedGoogle Scholar
  109. Munz E, Jakob PM, Borisjuk L (2016) The potential of nuclear magnetic resonance to track lipids in planta. Biochimie 130:97–108. CrossRefPubMedGoogle Scholar
  110. Musse M, De Guio F, Quellec S, Cambert M, Challois S, Davenel A (2010) Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography. Magn Reson Imaging 28(10):1525–1534. CrossRefPubMedGoogle Scholar
  111. Nestby R, Gribbestad I, Bjørgum R (1997) Magnetic resonance imaging (MRI) as a method for determination of freezing injury in strawberry crowns. Acta Physiol Plant 19(4):517–520. CrossRefGoogle Scholar
  112. Pope JM, Rumpel H, Kuhn W, Walker R, Leach D, Sarafis V (1991) Applications of chemical-shift-selective NMR microscopy to the non-invasive histochemistry of plant materials. Magn Reson Imaging 9(3):357–363. CrossRefPubMedGoogle Scholar
  113. Proctor WG, Yu FC (1950) The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compounds. Phys Rev 77(5):717. CrossRefGoogle Scholar
  114. Ramsey NF (1950) A molecular beam resonance method with separated oscillating fields. Phys Rev 78:695–699. CrossRefGoogle Scholar
  115. Razavi MS, Asghari A, Azadbakht M, Shamsabadi HA (2018) Analyzing the pear bruised volume after static loading by magnetic resonance imaging (MRI). Sci Hortic 229:33–39. CrossRefGoogle Scholar
  116. Redfield AG (1957) On the theory of relaxation processes. IBM J Res Dev 1(1):19–31. CrossRefGoogle Scholar
  117. Rondeau-Mouro C, Deslis S, Quellec S, Bauduin R (2015) Assessment of TD-NMR and quantitative MRI methods to investigate the apple transformation processes used in the cider-making technology. Magn Reson Food Sci 127–140. Capozzi F, Laghi L, Belton PS. (ed.)
  118. Saito K, Miki T, Hayashi S, Kajikawa H, Shimada M, Kawate Y, Nishizawa T, Ikegaya D, Kimura N, Takabatake K, Sugiura N, Suzuki M (1996) Application of magnetic resonance imaging to non-destructive void detection in watermelon. Cryogenics 36:1027–1031. CrossRefGoogle Scholar
  119. Sarafis V, Rumpel H, Pope J, Kuhn W (1990) Non-invasive histochemistry of plant materials by magnetic resonance microscopy. Protoplasma 159(1):70–73. CrossRefGoogle Scholar
  120. Schmidt SJ, Sun X, Litchfield JB, Eads TM (1996) Applications of magnetic resonance imaging in food science. Crit Rev Food Sci Nutr 36(4):357–385. CrossRefPubMedGoogle Scholar
  121. Sersa I, Macura S (2007) Spectral resolution enhancement by chemical shift imaging. Magn Reson Imaging 25(2):250–258. CrossRefPubMedGoogle Scholar
  122. Shaw TM, Elsken RH (1956) Moisture determination, determination of water by nuclear magnetic absorption in potato and apple tissue. J Agric Food Chem 4:162–164. CrossRefGoogle Scholar
  123. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559.–565CrossRefGoogle Scholar
  124. Sonego L, Ben-Arie R, Raynal J, Pech JC (1995) Biochemical and physical evaluation of textural characteristics of nectarines exhibiting wooly breakdown: NMR imaging, X-ray computed tomography and pectin composition. Postharvest Biol Technol 5(3):187–198. CrossRefGoogle Scholar
  125. Sozer N (ed) (2016) Imaging technologies and data processing for food engineers. Food Eng. Series. Springer International Publishing, Basel Google Scholar
  126. Stehling MK, Turner R, Mansfield P (1991) Echo planar imaging: magnetic resonance imaging in a fraction of a second. Science 254(5028):43–50. CrossRefPubMedGoogle Scholar
  127. Suchanek M, Kordulska M, Olejniczak Z, Figiel H, Turek K (2017) Application of low-field MRI for quality assessment of 'Conference' pears stored under controlled atmosphere conditions. Postharvest Biol Technol 124:100–106. CrossRefGoogle Scholar
  128. Sun N, Liu Y, Lee H, Weissleder R, Ham D (2009) CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J Solid State Circuits 44(5):1629–1643. CrossRefGoogle Scholar
  129. Sun T, Huang K, Xu H, Ying Y (2010) Research advances in non-destructive determination of internal quality in watermelon/melon: a review. J Food Eng 100(4):569–577. CrossRefGoogle Scholar
  130. Sun N, Yoon TJ, Lee H, Andress W, Weissleder R, Ham D (2011) Palm NMR and 1-chip NMR. IEEE J Solid State Circuits 46(1):342–352. CrossRefGoogle Scholar
  131. Szczypiński PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda, a software package for image texture analysis. Comput Methods Prog Biomed 94(1):66–76. CrossRefGoogle Scholar
  132. Taglienti A, Ritota M, Cozzolino S, Conte L, Terlizzi M, Sequi P, Valentini M (2009) Postharvest structural changes of Hayward kiwifruit by means of magnetic resonance imaging spectroscopy. Food Chem 114(4):1583–1589. CrossRefGoogle Scholar
  133. Takashi M, Saito K, Hayashi S, Kogaku T (1996) Nondestructive analysis of sugar content of watermeon using MRI device. Teion Kogaku 31(5):258–266. CrossRefGoogle Scholar
  134. Talluri S, Scheraga HA (1990) COSY with in-phase cross peaks. J Magn Reson 86(1):1–10. CrossRefGoogle Scholar
  135. Talluri S, Wagner G (1996) An optimized NOESY-HSQC. J Magn Reson 112(2):200–205 CrossRefGoogle Scholar
  136. Tse TY, Spanswick RM, Jelinski LW (1996) Quantitative evaluation of NMR and MRI methods to measure sucrose concentration in plants. Protoplasma 194(1–2):54–62. CrossRefGoogle Scholar
  137. Tyler DJ, Moore RJ, Marciani L, Gowland PA (2004) Rapid and accurate measurement of transverse relaxation times using a single shot multi-echo echo-planar imaging sequence. Magn Reson Imaging 22(7):1031–1037. CrossRefPubMedGoogle Scholar
  138. Utsuzawa S, Fukushima E (2017) Unilateral NMR with a barrel magnet. J Magn Reson 282:104–113. CrossRefPubMedGoogle Scholar
  139. Vernickel P, Röschmann P, Findeklee C, Lüdeke KM, Leussler CH, Overweg J, Katscher U, Grässlin I, Schünemann K (2007) Eight channel transmit/receive body MRI at 3T. Magn Reson Med 58(2):381–389. CrossRefPubMedGoogle Scholar
  140. Verpillat F, Ledbetter MP, Xu S, Michalak DJ, Hilty C, Bouchard LS, Antonijevic S, Budker D, Pines A (2008) Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor. Proc Natl Acad Sci 105(7):2271–2273. CrossRefPubMedGoogle Scholar
  141. Vicente AR, Ortugno C, Rosli H, Powell ALT, Greve LC, Labavitch JM (2007) Temporal sequence of cell wall disassembly events in developing fruits. 2. Analysis of blueberry (Vaccinium species). J Agric Food Chem 55(10):4125–4130. CrossRefPubMedGoogle Scholar
  142. Wang CY, Wang PC (1989) Non-destructive detection of core breakdown in ‘Bartlett’ pears with nuclear magnetic resonance imaging. Scientia Hortic 24(1):106–109. HortSci 241106-109WangBartlett Pears. pdfGoogle Scholar
  143. Wang CY, Wang PC, Faust M (1988) Non-destructive detection of watercore in apple with nuclear magnetic resonance imaging. Sci Hortic 35(3–4):227–234. CrossRefGoogle Scholar
  144. Wilson JD (1992) Statistical approach to the solution of 1st kind integral-equations arising in the study of materials and their properties. J Mater Sci 27(14):3911–3924. CrossRefGoogle Scholar
  145. Windt CW, Blumler P (2015) A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow. Tree Physiol 35(4):366–375. CrossRefPubMedGoogle Scholar
  146. Winisdorffer G, Musse M, Quellec S, Devaux MF, Lahaye M, Mariette F (2015) MRI investigation of subcellular water compartmentalization and gas distribution in apples. Magn Reson Imaging 33(5):671–680. CrossRefPubMedGoogle Scholar
  147. Yoshii K, Fukuoka M, Kawamura T, Ikeda T (2013) Measuring the water status of watermelon fruits by psychrometer and 1H nuclear magnetic resonance imaging. Environ Control Biol 51(3):113–120. CrossRefGoogle Scholar
  148. Zhang L, McCarthy MJ (2013) Assessment of pomegranate postharvest quality using nuclear magnetic resonance. Postharvest Biol Technol 77:59–66. CrossRefGoogle Scholar
  149. Zhou R, Li Y (2007) Texture analysis of MR image for predicting the firmness of Huanghua pears during storage using an artificial neural network. Magn Reson Imaging 25:727–732. CrossRefPubMedGoogle Scholar
  150. Zhou S, Shang D, Ying Y, Liao Y (2010) Detecting subtle bruises on fruits with nuclear magnetic resonance imaging. Nongye Jixie Xuebao/Trans Chin Soc Agric Mach 41(8):107–110. CrossRefGoogle Scholar
  151. Zhou H, Ye ZW, Yu ZF, Su MS, Du JH (2016) Application of low-field nuclear magnetic resonance and proton magnetic resonance imaging in evaluation of ‘Jinxiu’ yellow peach’s storage suitability. Emir J Food Agric 28(9):633–643. CrossRefGoogle Scholar
  152. Zion B, Chen P, McCarthy MJ (1995a) Detection of bruises in magnetic resonance images of apples. Comp Electron Agric 13(4):289–299. CrossRefGoogle Scholar
  153. Zion B, Chen P, McCarthy MJ (1995b) Non destructive quality evaluation of fresh prunes by NMR spectroscopy. J Sci Food Agric 67(4):423–429. CrossRefGoogle Scholar
  154. Zou X, Zhao J (eds) (2015) Nondestructive measurement in food and agro-products. Springer, Rotterdam. CrossRefGoogle Scholar
  155. Zur N, Shlizerman L, Ben-Ari G, Sadka A (2017) Use of magnetic resonance imaging (MRI) to study and predict fruit splitting in citrus. Hortic J 86(2):151–158. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication May/2018

Authors and Affiliations

  • R. K. Srivastava
    • 1
  • Sekhar Talluri
    • 1
  • Sk. Khasim Beebi
    • 1
  • B Rajesh Kumar
    • 2
  1. 1.Department of BiotechnologyGIT, GITAM UniversityVisakhapatnamIndia
  2. 2.Department of Electronics and Instrumentation EngineeringGIT, GITAM UniversityVisakhapatnamIndia

Personalised recommendations