Advertisement

Food Analytical Methods

, Volume 11, Issue 7, pp 2035–2041 | Cite as

Exploratory Analysis Applied for the Evaluation of Yerba Mate Adulteration (Ilex paraguariensis)

  • Manuella Schneider
  • Rosana C. S. Schneider
  • Valeriano A. Corbellini
  • Cláudia M. Mahlmann
  • Claudimar Sidnei Fior
  • Marco Flôres Ferrão
Article
  • 127 Downloads

Abstract

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to evaluate the potential to detect different sucrose concentrations added as adulterants in yerba mate (Ilex paraguariensis). For this purpose, the data acquired from 15 yerba mate samples were analyzed by hierarchical cluster analysis (HCA) and principal component analysis (PCA). Sucrose solutions from 5 to 30% of the total yerba quantity were added to each sample and analyzed in conjunction with the raw yerba mate sample. The fingerprint region (1300–800 cm−1) was extracted from the resulted spectra, smoothed by the Savitzky Golay method, normalized, average spectra of the triplicates and first derivative. Discrimination between the different sucrose concentrations in the samples was achieved by the exploratory analysis, demonstrating a sucrose concentration gradient in the PC1 × PC2 score plot. In this way, the results suggest a potential industrial use of ATR-FTIR alongside with chemometrics to avoid a frequent sugar adulteration in a simple, fast, and reliable methodology.

Keywords

Adulteration Ilex paraguariensis Sucrose Principal component analysis Hierarchical cluster analysis 

Notes

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), for the scholarship; Ervateira Valério, for the support; and TECNOUNISC - MCTIC (01.0144.00/2010).

Compliance with Ethical Standards

Conflict of Interest

Manuella Schneider declares that she has no conflict of interest. Rosana C. S. Schneider declares that she has no conflict of interest. Valeriano A. Corbellini declares that he has no conflict of interest. Cláudia M. Mahlmann declares that she has no conflict of interest. Claudimar Sidnei Fior declares that he has no conflict of interest. Marco Flôres Ferrão declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

Publication has been approved by all individual participants.

References

  1. Alexandre Marcelo MC, Martins CA, Pozebon D, Ferrao MF (2014) Methods of multivariate analysis of NIR reflectance spectra for classification of yerba mate. Anal Methods 6:7621–7627.  https://doi.org/10.1039/C4AY01350F CrossRefGoogle Scholar
  2. Anastasaki E, Kanakis C, Pappas C, Maggi L, del Campo CP, Carmona M, Alonso GL, Polissiou MG (2010) Differentiation of saffron from four countries by mid-infrared spectroscopy and multivariate analysis. Eur Food Res Technol 230:571–577.  https://doi.org/10.1007/s00217-009-1197-7 CrossRefGoogle Scholar
  3. Anesini C, Turner S, Cogoi L, Filip R (2012) Study of the participation of caffeine and polyphenols on the overall antioxidant activity of mate (Ilex paraguariensis). LWT Food Sci Technol 45:299–304.  https://doi.org/10.1016/j.lwt.2011.06.015 CrossRefGoogle Scholar
  4. ANVISA Resolução RDC no 303 de 07 de novembro de 2002Google Scholar
  5. Bastos DHM, Oliveira DD, Matsumoto RT, Carvalho PDO, Ribeiro ML (2007) Yerba mate: pharmacological properties, research and biotechnology. Med Aromat Plant Sci Biotechnol 1:37–46Google Scholar
  6. Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A (2011) Recent advances on Ilex paraguariensis research: minireview. J Ethnopharmacol 136:378–384.  https://doi.org/10.1016/j.jep.2010.06.032 CrossRefPubMedGoogle Scholar
  7. Budinova G, Vlacil D, Mestek O, Volka K (1998) Application of infrared spectroscopy to the assessment of authenticity of tea. Talanta 47:255–260CrossRefPubMedGoogle Scholar
  8. Bureau S, Ruiz D, Reich M, Gouble B, Bertrand D, Audergon J-M, Renard CMGC (2009) Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem 115:1133–1140.  https://doi.org/10.1016/j.foodchem.2008.12.100 CrossRefGoogle Scholar
  9. Cardozo Junior EL, Morand C (2016) Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health—a review. J Funct Foods 21:440–454.  https://doi.org/10.1016/j.jff.2015.12.010 CrossRefGoogle Scholar
  10. Chen Q, Zhao J, Lin H (2009) Study on discrimination of roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition. Spectrochim Acta A Mol Biomol Spectrosc 72:845–850.  https://doi.org/10.1016/j.saa.2008.12.002 CrossRefPubMedGoogle Scholar
  11. Chen Y, Deng J, Wang Y, Liu B, Ding J, Mao X, Zhang J, Hu H, Li J (2014) Study on discrimination of white tea and albino tea based on near-infrared spectroscopy and chemometrics. J Sci Food Agric 94:1026–1033.  https://doi.org/10.1002/jsfa.6376 CrossRefPubMedGoogle Scholar
  12. Colthup N (2012) Introduction to infrared and Raman spectroscopy. Elsevier Science, AmsterdamGoogle Scholar
  13. Dharmaraj S, Jamaludin AS, Razak HM, Valliappan R, Ahmad NA, Harn GL, Ismail Z (2006) The classification of Phyllanthus niruri Linn. according to location by infrared spectroscopy. Vib Spectrosc 41:68–72.  https://doi.org/10.1016/j.vibspec.2005.12.012 CrossRefGoogle Scholar
  14. Diniz PHGD, Gomes AA, Pistonesi MF, Band BSF, de Araújo MCU (2014) Simultaneous classification of teas according to their varieties and geographical origins by using NIR spectroscopy and SPA-LDA. Food Anal Methods 7:1712–1718.  https://doi.org/10.1007/s12161-014-9809-7 CrossRefGoogle Scholar
  15. Esslinger S, Riedl J, Fauhl-Hassek C (2014) Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res Int 60:189–204.  https://doi.org/10.1016/j.foodres.2013.10.015 CrossRefGoogle Scholar
  16. FAOSTAT (2017) Food and Agricultural Organization (FAO) Statistics Division 2017Google Scholar
  17. Gerke IBB, Hamerski F, Scheer AP, Silva VR (2017) Clarification of crude extract of yerba mate (Ilex paraguariensis) by membrane processes: analysis of fouling and loss of bioactive compounds. Food Bioprod Process 102:204–212.  https://doi.org/10.1016/j.fbp.2016.12.008 CrossRefGoogle Scholar
  18. Heck CI, De Mejia EG (2007) Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72:R138–R151.  https://doi.org/10.1111/j.1750-3841.2007.00535.x CrossRefPubMedGoogle Scholar
  19. Helfer GA, Bock F, Marder L, Furtado JC, Costa AB, Ferrão MF (2015) Chemostat, um software gratuito para análise exploratória de dados multivariados. Química Nova 38:575–579Google Scholar
  20. Holowaty SA, Trela V, Thea AE, Scipioni GP, Schmalko ME (2016) Yerba maté (Ilex paraguariensis St. Hil.): chemical and physical changes under different aging conditions. J Food Process Eng 39:19–30.  https://doi.org/10.1111/jfpe.12195 CrossRefGoogle Scholar
  21. Hong E, Lee SY, Jeong JY, Park JM, Kim BH, Kwon K, Chun HS (2017) Modern analytical methods for the detection of food fraud and adulteration by food category. J Sci Food Agric 97:3877–3896.  https://doi.org/10.1002/jsfa.8364 CrossRefPubMedGoogle Scholar
  22. Huang Y, Carragher J, Cozzolino D (2016) Measurement of fructose, glucose, maltose and sucrose in barley malt using attenuated total reflectance mid-infrared spectroscopy. Food Anal Methods 9:1079–1085.  https://doi.org/10.1007/s12161-015-0286-4 CrossRefGoogle Scholar
  23. Kasprzyk I, Depciuch J, Grabek-Lejko D, Parlinska-Wojtan M (2018) FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control 84:33–40.  https://doi.org/10.1016/j.foodcont.2017.07.015 CrossRefGoogle Scholar
  24. Kennedy S (2012) Emerging global food system risks and potential solutions. In: Improving import food safety. John Wiley & Sons, Inc, pp 1–20.  https://doi.org/10.1002/9781118464298.ch1
  25. Kokalj M, Štih K, Kreft S (2014) Herbal tea identification using mid-infrared spectroscopy. Planta Med 80:1023–1028.  https://doi.org/10.1055/s-0034-1382904 CrossRefPubMedGoogle Scholar
  26. Luqing L, Lingdong W, Jingming N, Zhengzhu Z (2015) Detection and quantification of sugar and glucose syrup in roasted green tea using near infrared spectroscopy. J Near Infrared Spectrosc 23:317–325CrossRefGoogle Scholar
  27. Luykx DMAM, van Ruth SM (2008) An overview of analytical methods for determining the geographical origin of food products. Food Chem 107:897–911.  https://doi.org/10.1016/j.foodchem.2007.09.038 CrossRefGoogle Scholar
  28. Manning L, Soon JM (2014) Developing systems to control food adulteration. Food Policy 49, Part 1:23–32.  https://doi.org/10.1016/j.foodpol.2014.06.005 CrossRefGoogle Scholar
  29. Nickless E, Holroyd SE, Hamilton G, Gordon K, Wargent JJ (2016a) Analytical method development using FTIR-ATR and FT-Raman spectroscopy to assay fructose, sucrose, glucose and dihydroxyacetone, in Leptospermum scoparium nectar. 84.  https://doi.org/10.1016/j.vibspec.2016.02.011
  30. Nickless EM, Holroyd SE, Hamilton G, Gordon KC, Wargent JJ (2016b) Analytical method development using FTIR-ATR and FT-Raman spectroscopy to assay fructose, sucrose, glucose and dihydroxyacetone, in Leptospermum scoparium nectar. Vib Spectrosc 84:38–43.  https://doi.org/10.1016/j.vibspec.2016.02.011 CrossRefGoogle Scholar
  31. Pizarro C, Esteban-Díez I, González-Sáiz JM (2007) Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. Anal Chim Acta 585:266–276.  https://doi.org/10.1016/j.aca.2006.12.057 CrossRefPubMedGoogle Scholar
  32. Reis N, Botelho BG, Franca AS, Oliveira LS (2017) Simultaneous detection of multiple adulterants in ground roasted coffee by ATR-FTIR spectroscopy and data fusion. Food Anal Methods 10:2700–2709.  https://doi.org/10.1007/s12161-017-0832-3 CrossRefGoogle Scholar
  33. Rodriguez-Saona LE, Giusti MM, Shotts M (2016) 4 - Advances in Infrared Spectroscopy for Food Authenticity Testing A2. In: Downey G (ed) Advances in Food Authenticity Testing. Woodhead Publishing, pp 71–116.  https://doi.org/10.1016/B978-0-08-100220-9.00004-7
  34. Svečnjak L, Biliškov N, Bubalo D, Barišić D (2011) Application of infrared spectroscopy in honey analysis. Agric Conspec Sci (ACS) 76:191–195Google Scholar
  35. Varliklioz Er S, Eksi-Kocak H, Yetim H, Boyaci IH (2017) Novel spectroscopic method for determination and quantification of saffron adulteration. Food Anal Methods 10:1547–1555.  https://doi.org/10.1007/s12161-016-0710-4 CrossRefGoogle Scholar
  36. Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K (2017) Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta A Mol Biomol Spectrosc 185:317–335.  https://doi.org/10.1016/j.saa.2017.05.045 CrossRefPubMedGoogle Scholar
  37. Zhao Y, Chen P, Lin L, Harnly JM, Yu L, Li Z (2011) Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem 126:1269–1277.  https://doi.org/10.1016/j.foodchem.2010.11.055 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Manuella Schneider
    • 1
  • Rosana C. S. Schneider
    • 2
  • Valeriano A. Corbellini
    • 2
  • Cláudia M. Mahlmann
    • 2
  • Claudimar Sidnei Fior
    • 3
  • Marco Flôres Ferrão
    • 1
    • 4
  1. 1.Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Universidade de Santa Cruz do SulSanta Cruz do SulBrazil
  3. 3.Faculdade de AgronomiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Instituto Nacional de Ciência e Tecnologia - Bioanalítca (INCT – Bioanalítica)Cidade Universitária Zeferino VazCampinasBrazil

Personalised recommendations